Voir la notice de l'article provenant de la source Numdam
Let π a cuspidal generic representation of SO(2n+1). We prove that .
Soit π une représentation cuspidale géńerique de SO(2n+1). Nous prouvons que .
Lapid, Erez 1 ; Rallis, Stephen 1
@article{CRMATH_2002__334_2_101_0, author = {Lapid, Erez and Rallis, Stephen}, title = {Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations}, journal = {Comptes Rendus. Math\'ematique}, pages = {101--104}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02217-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02217-3/} }
TY - JOUR AU - Lapid, Erez AU - Rallis, Stephen TI - Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations JO - Comptes Rendus. Mathématique PY - 2002 SP - 101 EP - 104 VL - 334 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02217-3/ DO - 10.1016/S1631-073X(02)02217-3 LA - en ID - CRMATH_2002__334_2_101_0 ER -
%0 Journal Article %A Lapid, Erez %A Rallis, Stephen %T Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations %J Comptes Rendus. Mathématique %D 2002 %P 101-104 %V 334 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02217-3/ %R 10.1016/S1631-073X(02)02217-3 %G en %F CRMATH_2002__334_2_101_0
Lapid, Erez; Rallis, Stephen. Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 101-104. doi: 10.1016/S1631-073X(02)02217-3
Cité par Sources :