Voir la notice de l'article provenant de la source Numdam
Nous montrons comment on peut associer à chaque forme binaire irréductible un élément du groupe de classes de l'anneau associé. Cette classe ne dépend pas du choix du représentant de la forme modulo l'action de SL2. Il s'agit d'une généralisation de la théorie classique pour les formes quadratiques.
We explain how to associate to any irreducible binary form an element of the class group in the corresponding ring. This class does not depend on the choice of the form modulo the action of SL2. The question is to generalize the classical theory of quadratic forms.
Simon, Denis 1
@article{CRMATH_2003__336_1_7_0, author = {Simon, Denis}, title = {La classe invariante d'une forme binaire}, journal = {Comptes Rendus. Math\'ematique}, pages = {7--10}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00021-3}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)00021-3/} }
TY - JOUR AU - Simon, Denis TI - La classe invariante d'une forme binaire JO - Comptes Rendus. Mathématique PY - 2003 SP - 7 EP - 10 VL - 336 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)00021-3/ DO - 10.1016/S1631-073X(02)00021-3 LA - fr ID - CRMATH_2003__336_1_7_0 ER -
Simon, Denis. La classe invariante d'une forme binaire. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 7-10. doi: 10.1016/S1631-073X(02)00021-3
Cité par Sources :