A spectral bound for graph irregularity
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 375-379.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The imbalance of an edge $e=\{u,v\}$ in a graph is defined as $i(e)=|d(u)-d(v)|$, where $d(\cdot )$ is the vertex degree. The irregularity $I(G)$ of $G$ is then defined as the sum of imbalances over all edges of $G$. This concept was introduced by Albertson who proved that $I(G) \leq 4n^{3}/27$ (where $n=|V(G)|$) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves the Laplacian spectral radius $\lambda $.
DOI : 10.1007/s10587-015-0182-5
Classification : 05C07, 05C35, 05C50
Keywords: irregularity; Laplacian matrix; degree; Laplacian index
@article{10_1007_s10587_015_0182_5,
     author = {Goldberg, Felix},
     title = {A spectral bound for graph irregularity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {375--379},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2015},
     doi = {10.1007/s10587-015-0182-5},
     mrnumber = {3360433},
     zbl = {06486953},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0182-5/}
}
TY  - JOUR
AU  - Goldberg, Felix
TI  - A spectral bound for graph irregularity
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 375
EP  - 379
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0182-5/
DO  - 10.1007/s10587-015-0182-5
LA  - en
ID  - 10_1007_s10587_015_0182_5
ER  - 
%0 Journal Article
%A Goldberg, Felix
%T A spectral bound for graph irregularity
%J Czechoslovak Mathematical Journal
%D 2015
%P 375-379
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0182-5/
%R 10.1007/s10587-015-0182-5
%G en
%F 10_1007_s10587_015_0182_5
Goldberg, Felix. A spectral bound for graph irregularity. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 375-379. doi : 10.1007/s10587-015-0182-5. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0182-5/

Cité par Sources :