Keywords: claw-free graph; 2-factor; closure; locally disconnected vertex; singular edge
@article{10_1007_s10587_015_0177_2,
author = {An, Mingqiang and Xiong, Liming and Tian, Runli},
title = {2-factors in claw-free graphs with locally disconnected vertices},
journal = {Czechoslovak Mathematical Journal},
pages = {317--330},
year = {2015},
volume = {65},
number = {2},
doi = {10.1007/s10587-015-0177-2},
mrnumber = {3360428},
zbl = {06486948},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0177-2/}
}
TY - JOUR AU - An, Mingqiang AU - Xiong, Liming AU - Tian, Runli TI - 2-factors in claw-free graphs with locally disconnected vertices JO - Czechoslovak Mathematical Journal PY - 2015 SP - 317 EP - 330 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0177-2/ DO - 10.1007/s10587-015-0177-2 LA - en ID - 10_1007_s10587_015_0177_2 ER -
%0 Journal Article %A An, Mingqiang %A Xiong, Liming %A Tian, Runli %T 2-factors in claw-free graphs with locally disconnected vertices %J Czechoslovak Mathematical Journal %D 2015 %P 317-330 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0177-2/ %R 10.1007/s10587-015-0177-2 %G en %F 10_1007_s10587_015_0177_2
An, Mingqiang; Xiong, Liming; Tian, Runli. 2-factors in claw-free graphs with locally disconnected vertices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 317-330. doi: 10.1007/s10587-015-0177-2
[1] Bielak, H.: Sufficient condition for Hamiltonicity of $N_{2}$-locally connected claw-free graphs. Discrete Math. 213 (2000), 21-24. | DOI | MR | Zbl
[2] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier Publishing Co. New York (1976). | MR
[3] Choudum, S. A., Paulraj, M. S.: Regular factors in $K_{1, 3}$-free graphs. J. Graph Theory 15 (1991), 259-265. | DOI | MR
[4] Egawa, Y., Ota, K.: Regular factors in $K_{1, n}$-free graphs. J. Graph Theory 15 (1991), 337-344. | DOI | MR
[5] Faudree, J. R., Faudree, R. J., Ryjáček, Z.: Forbidden subgraphs that imply 2-factors. Discrete Math. 308 (2008), 1571-1582. | MR | Zbl
[6] Gould, R. J., Hynds, E. A.: A note on cycles in 2-factors of line graphs. Bull. Inst. Comb. Appl. 26 (1999), 46-48. | MR | Zbl
[7] Li, M.: Hamiltonian cycles in $N^{2}$-locally connected claw-free graphs. Ars Comb. 62 (2002), 281-288. | MR
[8] Oberly, D. J., Sumner, D. P.: Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian. J. Graph Theory 3 (1979), 351-356. | DOI | MR
[9] Pfender, F.: Hamiltonicity and forbidden subgraphs in 4-connected graphs. J. Graph Theory 49 (2005), 262-272. | DOI | MR | Zbl
[10] Ryjáček, Z.: On a closure concept in claw-free graphs. J. Comb. Theory, Ser. B 70 (1997), 217-224. | DOI | MR
[11] Ryjáček, Z.: Hamiltonian circuits in $N_{2}$-locally connected $K_{1,3}$-free graphs. J. Graph Theory 14 (1990), 321-331. | DOI | MR
[12] Ryjáček, Z., Saito, A., Schelp, R. H.: Closure, 2-factors and cycle coverings in claw-free graphs. J. Graph Theory 32 (1999), 109-117. | DOI | MR | Zbl
[13] Ryjáček, Z., Xiong, L., Yoshimoto, K.: Closure concept for 2-factors in claw-free graphs. Discrete Math. 310 (2010), 1573-1579. | DOI | MR | Zbl
[14] Tian, R., Xiong, L.: Hamiltonian claw-free graphs with locally disconnected vertices. (to appear) in Discrete Math. DOI:10.1016/j.disc.2015.04.020. | DOI
[15] Yoshimoto, K.: On the number of components in 2-factors of claw-free graphs. Discrete Math. 307 (2007), 2808-2819. | DOI | MR | Zbl
Cité par Sources :