Keywords: congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number
@article{10_1007_s10587_015_0171_8,
author = {Me\v{s}trovi\'c, Romeo},
title = {Congruences for {Wolstenholme} primes},
journal = {Czechoslovak Mathematical Journal},
pages = {237--253},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0171-8},
mrnumber = {3336036},
zbl = {06433732},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/}
}
Meštrović, Romeo. Congruences for Wolstenholme primes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 237-253. doi: 10.1007/s10587-015-0171-8
[1] Bayat, M.: A generalization of Wolstenholme's theorem. Am. Math. Mon. 104 (1997), 557-560. | DOI | MR | Zbl
[2] Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes. Math. Comput. 66 (1997), 433-449. | DOI | MR | Zbl
[3] Dilcher, K., Skula, L.: A new criterion for the first case of Fermat's last theorem. Math. Comp. 64 (1995), 363-392. | MR | Zbl
[4] Dilcher, K., Skula, L., Slavutsky, I. Sh.: Bernoulli Numbers. Bibliography (1713-1990). Queen's papers in Pure and Applied Mathematics 87 Queen's University, Kingston (1991), updated on-line version: www.mathstat.dal.ca/ {dilcher/bernoulli.html}. | MR
[5] Glaisher, J. W. L.: Congruences relating to the sums of products of the first $n$ numbers and to other sums of products. Quart. J. 31 (1900), 1-35.
[6] Glaisher, J. W. L.: On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$. Quart. J. 31 (1900), 321-353.
[7] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. J. Borwein, et al. Organic Mathematics Proc. of the workshop. Burnaby, 1995. CMS Conf. Proc. 20, American Mathematical Society, Providence (1997), 253-276. | MR | Zbl
[8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Clarendon Press Oxford (1979). | MR | Zbl
[9] Helou, C., Terjanian, G.: On Wolstenholme's theorem and its converse. J. Number Theory 128 (2008), 475-499. | DOI | MR | Zbl
[10] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84 Springer, New York (1982). | MR | Zbl
[11] Jacobson, N.: Basic Algebra. I. W. H. Freeman and Company New York (1985). | MR | Zbl
[12] Jakubec, S.: Note on the congruences $2^{p-1}\equiv 1\pmod {p^2}$, $3^{p-1}\equiv 1\pmod {p^2}$, $5^{p-1}\equiv 1\pmod {p^2}$. Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120. | MR | Zbl
[13] Jakubec, S.: Note on Wieferich's congruence for primes $p\equiv 1\pmod{4 }$. Abh. Math. Semin. Univ. Hamb. 68 (1998), 193-197. | DOI | MR | Zbl
[14] Kummer, E. E.: Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen. J. Reine Angew. Math. 41 (1851), 368-372 German.
[15] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. (2) 39 (1938), 350-360. | MR | Zbl
[16] McIntosh, R. J.: On the converse of Wolstenholme's theorem. Acta Arith. 71 (1995), 381-389. | DOI | MR | Zbl
[17] McIntosh, R. J., Roettger, E. L.: A search for Fibonacci-Wieferich and Wolstenholme primes. Math. Comput. 76 (2007), 2087-2094. | DOI | MR | Zbl
[18] Meštrović, R.: On the mod $p^7$ determination of ${2p-1\choose p-1}$. Rocky Mt. J. Math. 44 (2014), 633-648; preprint arXiv:1108.1174v1 [math.NT] (2011) . | MR
[19] Meštrović, R.: Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862-2012). preprint arXiv:1111.3057v2 [math.NT] (2011).
[20] Meštrović, R.: Some Wolstenholme type congruences. Math. Appl., Brno 2 (2013), 35-42. | DOI | MR
[21] Ribenboim, P.: 13 Lectures on Fermat's Last Theorem. Springer New York (1979). | MR | Zbl
[22] Skula, L.: Fermat's last theorem and the Fermat quotients. Comment. Math. Univ. St. Pauli 41 (1992), 35-54. | MR | Zbl
[23] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5 (1862), 35-39.
[24] Zhao, J.: Wolstenholme type theorem for multiple harmonic sums. Int. J. Number Theory 4 (2008), 73-106. | DOI | MR | Zbl
[25] Zhao, J.: Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem. J. Number Theory 123 (2007), 18-26. | DOI | MR
[26] Zhou, X., Cai, T.: A generalization of a curious congruence on harmonic sums. Proc. Am. Math. Soc. 135 (2007), 1329-1333. | DOI | MR | Zbl
Cité par Sources :