Congruences for Wolstenholme primes
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 237-253
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A prime $p$ is said to be a Wolstenholme prime if it satisfies the congruence ${2p-1\choose p-1} \equiv 1 \pmod {p^4}$. For such a prime $p$, we establish an expression for ${2p-1\choose p-1}\pmod {p^8}$ given in terms of the sums $R_i:=\sum _{k=1}^{p-1}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime $p$ we have $$ \left ({2p-1\atop p-1}\right ) \equiv 1 -2p \sum _{k=1}^{p-1}\frac {1}{k} -2p^2\sum _{k=1}^{p-1}\frac {1}{k^2}\pmod {p^7}. $$ Moreover, using a recent result of the author, we prove that a prime $p$ satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique of Helou and Terjanian, the above congruence is given as an expression involving the Bernoulli numbers.
A prime $p$ is said to be a Wolstenholme prime if it satisfies the congruence ${2p-1\choose p-1} \equiv 1 \pmod {p^4}$. For such a prime $p$, we establish an expression for ${2p-1\choose p-1}\pmod {p^8}$ given in terms of the sums $R_i:=\sum _{k=1}^{p-1}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime $p$ we have $$ \left ({2p-1\atop p-1}\right ) \equiv 1 -2p \sum _{k=1}^{p-1}\frac {1}{k} -2p^2\sum _{k=1}^{p-1}\frac {1}{k^2}\pmod {p^7}. $$ Moreover, using a recent result of the author, we prove that a prime $p$ satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique of Helou and Terjanian, the above congruence is given as an expression involving the Bernoulli numbers.
DOI : 10.1007/s10587-015-0171-8
Classification : 05A10, 11A07, 11B65, 11B68, 11B75
Keywords: congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number
@article{10_1007_s10587_015_0171_8,
     author = {Me\v{s}trovi\'c, Romeo},
     title = {Congruences for {Wolstenholme} primes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {237--253},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0171-8},
     mrnumber = {3336036},
     zbl = {06433732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/}
}
TY  - JOUR
AU  - Meštrović, Romeo
TI  - Congruences for Wolstenholme primes
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 237
EP  - 253
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/
DO  - 10.1007/s10587-015-0171-8
LA  - en
ID  - 10_1007_s10587_015_0171_8
ER  - 
%0 Journal Article
%A Meštrović, Romeo
%T Congruences for Wolstenholme primes
%J Czechoslovak Mathematical Journal
%D 2015
%P 237-253
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/
%R 10.1007/s10587-015-0171-8
%G en
%F 10_1007_s10587_015_0171_8
Meštrović, Romeo. Congruences for Wolstenholme primes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 237-253. doi: 10.1007/s10587-015-0171-8

[1] Bayat, M.: A generalization of Wolstenholme's theorem. Am. Math. Mon. 104 (1997), 557-560. | DOI | MR | Zbl

[2] Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes. Math. Comput. 66 (1997), 433-449. | DOI | MR | Zbl

[3] Dilcher, K., Skula, L.: A new criterion for the first case of Fermat's last theorem. Math. Comp. 64 (1995), 363-392. | MR | Zbl

[4] Dilcher, K., Skula, L., Slavutsky, I. Sh.: Bernoulli Numbers. Bibliography (1713-1990). Queen's papers in Pure and Applied Mathematics 87 Queen's University, Kingston (1991), updated on-line version: www.mathstat.dal.ca/ {dilcher/bernoulli.html}. | MR

[5] Glaisher, J. W. L.: Congruences relating to the sums of products of the first $n$ numbers and to other sums of products. Quart. J. 31 (1900), 1-35.

[6] Glaisher, J. W. L.: On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$. Quart. J. 31 (1900), 321-353.

[7] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. J. Borwein, et al. Organic Mathematics Proc. of the workshop. Burnaby, 1995. CMS Conf. Proc. 20, American Mathematical Society, Providence (1997), 253-276. | MR | Zbl

[8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Clarendon Press Oxford (1979). | MR | Zbl

[9] Helou, C., Terjanian, G.: On Wolstenholme's theorem and its converse. J. Number Theory 128 (2008), 475-499. | DOI | MR | Zbl

[10] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84 Springer, New York (1982). | MR | Zbl

[11] Jacobson, N.: Basic Algebra. I. W. H. Freeman and Company New York (1985). | MR | Zbl

[12] Jakubec, S.: Note on the congruences $2^{p-1}\equiv 1\pmod {p^2}$, $3^{p-1}\equiv 1\pmod {p^2}$, $5^{p-1}\equiv 1\pmod {p^2}$. Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120. | MR | Zbl

[13] Jakubec, S.: Note on Wieferich's congruence for primes $p\equiv 1\pmod{4 }$. Abh. Math. Semin. Univ. Hamb. 68 (1998), 193-197. | DOI | MR | Zbl

[14] Kummer, E. E.: Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen. J. Reine Angew. Math. 41 (1851), 368-372 German.

[15] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. (2) 39 (1938), 350-360. | MR | Zbl

[16] McIntosh, R. J.: On the converse of Wolstenholme's theorem. Acta Arith. 71 (1995), 381-389. | DOI | MR | Zbl

[17] McIntosh, R. J., Roettger, E. L.: A search for Fibonacci-Wieferich and Wolstenholme primes. Math. Comput. 76 (2007), 2087-2094. | DOI | MR | Zbl

[18] Meštrović, R.: On the mod $p^7$ determination of ${2p-1\choose p-1}$. Rocky Mt. J. Math. 44 (2014), 633-648; preprint arXiv:1108.1174v1 [math.NT] (2011) . | MR

[19] Meštrović, R.: Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862-2012). preprint arXiv:1111.3057v2 [math.NT] (2011).

[20] Meštrović, R.: Some Wolstenholme type congruences. Math. Appl., Brno 2 (2013), 35-42. | DOI | MR

[21] Ribenboim, P.: 13 Lectures on Fermat's Last Theorem. Springer New York (1979). | MR | Zbl

[22] Skula, L.: Fermat's last theorem and the Fermat quotients. Comment. Math. Univ. St. Pauli 41 (1992), 35-54. | MR | Zbl

[23] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5 (1862), 35-39.

[24] Zhao, J.: Wolstenholme type theorem for multiple harmonic sums. Int. J. Number Theory 4 (2008), 73-106. | DOI | MR | Zbl

[25] Zhao, J.: Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem. J. Number Theory 123 (2007), 18-26. | DOI | MR

[26] Zhou, X., Cai, T.: A generalization of a curious congruence on harmonic sums. Proc. Am. Math. Soc. 135 (2007), 1329-1333. | DOI | MR | Zbl

Cité par Sources :