Congruences for Wolstenholme primes
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 237-253.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A prime $p$ is said to be a Wolstenholme prime if it satisfies the congruence ${2p-1\choose p-1} \equiv 1 \pmod {p^4}$. For such a prime $p$, we establish an expression for ${2p-1\choose p-1}\pmod {p^8}$ given in terms of the sums $R_i:=\sum _{k=1}^{p-1}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime $p$ we have $$ \left ({2p-1\atop p-1}\right ) \equiv 1 -2p \sum _{k=1}^{p-1}\frac {1}{k} -2p^2\sum _{k=1}^{p-1}\frac {1}{k^2}\pmod {p^7}. $$ Moreover, using a recent result of the author, we prove that a prime $p$ satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique of Helou and Terjanian, the above congruence is given as an expression involving the Bernoulli numbers.
DOI : 10.1007/s10587-015-0171-8
Classification : 05A10, 11A07, 11B65, 11B68, 11B75
Keywords: congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number
@article{10_1007_s10587_015_0171_8,
     author = {Me\v{s}trovi\'c, Romeo},
     title = {Congruences for {Wolstenholme} primes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {237--253},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.1007/s10587-015-0171-8},
     mrnumber = {3336036},
     zbl = {06433732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/}
}
TY  - JOUR
AU  - Meštrović, Romeo
TI  - Congruences for Wolstenholme primes
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 237
EP  - 253
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/
DO  - 10.1007/s10587-015-0171-8
LA  - en
ID  - 10_1007_s10587_015_0171_8
ER  - 
%0 Journal Article
%A Meštrović, Romeo
%T Congruences for Wolstenholme primes
%J Czechoslovak Mathematical Journal
%D 2015
%P 237-253
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/
%R 10.1007/s10587-015-0171-8
%G en
%F 10_1007_s10587_015_0171_8
Meštrović, Romeo. Congruences for Wolstenholme primes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 237-253. doi : 10.1007/s10587-015-0171-8. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/

Cité par Sources :