Congruences for Wolstenholme primes
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 237-253
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A prime $p$ is said to be a Wolstenholme prime if it satisfies the congruence ${2p-1\choose p-1} \equiv 1 \pmod {p^4}$. For such a prime $p$, we establish an expression for ${2p-1\choose p-1}\pmod {p^8}$ given in terms of the sums $R_i:=\sum _{k=1}^{p-1}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime $p$ we have $$ \left ({2p-1\atop p-1}\right ) \equiv 1 -2p \sum _{k=1}^{p-1}\frac {1}{k} -2p^2\sum _{k=1}^{p-1}\frac {1}{k^2}\pmod {p^7}. $$ Moreover, using a recent result of the author, we prove that a prime $p$ satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique of Helou and Terjanian, the above congruence is given as an expression involving the Bernoulli numbers.
DOI :
10.1007/s10587-015-0171-8
Classification :
05A10, 11A07, 11B65, 11B68, 11B75
Keywords: congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number
Keywords: congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number
@article{10_1007_s10587_015_0171_8,
author = {Me\v{s}trovi\'c, Romeo},
title = {Congruences for {Wolstenholme} primes},
journal = {Czechoslovak Mathematical Journal},
pages = {237--253},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2015},
doi = {10.1007/s10587-015-0171-8},
mrnumber = {3336036},
zbl = {06433732},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/}
}
TY - JOUR AU - Meštrović, Romeo TI - Congruences for Wolstenholme primes JO - Czechoslovak Mathematical Journal PY - 2015 SP - 237 EP - 253 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0171-8/ DO - 10.1007/s10587-015-0171-8 LA - en ID - 10_1007_s10587_015_0171_8 ER -
Meštrović, Romeo. Congruences for Wolstenholme primes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 237-253. doi: 10.1007/s10587-015-0171-8
Cité par Sources :