Linear recurrence sequences without zeros
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 857-865
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $a_{d-1},\dots ,a_0 \in \mathbb Z$, where $d \in \mathbb N$ and $a_0 \neq 0$, and let $X=(x_n)_{n=1}^{\infty }$ be a sequence of integers given by the linear recurrence $x_{n+d}=a_{d-1}x_{n+d-1}+\dots +a_0x_{n}$ for $n=1,2,3,\dots $. We show that there are a prime number $p$ and $d$ integers $x_1,\dots ,x_d$ such that no element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined by the above linear recurrence is divisible by $p$. Furthermore, for any nonnegative integer $s$ there is a prime number $p \geq 3$ and $d$ integers $x_1,\dots ,x_d$ such that every element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined as above modulo $p$ belongs to the set $\{s+1,s+2,\dots ,p-s-1\}$.
DOI :
10.1007/s10587-014-0138-1
Classification :
11B37, 11B50, 11T06
Keywords: linear recurrence sequence; period modulo $p$; polynomial splitting in $\mathbb F_p[z]$
Keywords: linear recurrence sequence; period modulo $p$; polynomial splitting in $\mathbb F_p[z]$
@article{10_1007_s10587_014_0138_1,
author = {Dubickas, Art\={u}ras and Novikas, Aivaras},
title = {Linear recurrence sequences without zeros},
journal = {Czechoslovak Mathematical Journal},
pages = {857--865},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {2014},
doi = {10.1007/s10587-014-0138-1},
mrnumber = {3298566},
zbl = {06391531},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/}
}
TY - JOUR AU - Dubickas, Artūras AU - Novikas, Aivaras TI - Linear recurrence sequences without zeros JO - Czechoslovak Mathematical Journal PY - 2014 SP - 857 EP - 865 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/ DO - 10.1007/s10587-014-0138-1 LA - en ID - 10_1007_s10587_014_0138_1 ER -
%0 Journal Article %A Dubickas, Artūras %A Novikas, Aivaras %T Linear recurrence sequences without zeros %J Czechoslovak Mathematical Journal %D 2014 %P 857-865 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/ %R 10.1007/s10587-014-0138-1 %G en %F 10_1007_s10587_014_0138_1
Dubickas, Artūras; Novikas, Aivaras. Linear recurrence sequences without zeros. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 857-865. doi: 10.1007/s10587-014-0138-1
Cité par Sources :