Keywords: linear recurrence sequence; period modulo $p$; polynomial splitting in $\mathbb F_p[z]$
@article{10_1007_s10587_014_0138_1,
author = {Dubickas, Art\={u}ras and Novikas, Aivaras},
title = {Linear recurrence sequences without zeros},
journal = {Czechoslovak Mathematical Journal},
pages = {857--865},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0138-1},
mrnumber = {3298566},
zbl = {06391531},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/}
}
TY - JOUR AU - Dubickas, Artūras AU - Novikas, Aivaras TI - Linear recurrence sequences without zeros JO - Czechoslovak Mathematical Journal PY - 2014 SP - 857 EP - 865 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/ DO - 10.1007/s10587-014-0138-1 LA - en ID - 10_1007_s10587_014_0138_1 ER -
%0 Journal Article %A Dubickas, Artūras %A Novikas, Aivaras %T Linear recurrence sequences without zeros %J Czechoslovak Mathematical Journal %D 2014 %P 857-865 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/ %R 10.1007/s10587-014-0138-1 %G en %F 10_1007_s10587_014_0138_1
Dubickas, Artūras; Novikas, Aivaras. Linear recurrence sequences without zeros. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 857-865. doi: 10.1007/s10587-014-0138-1
[1] Adleman, L. M., Odlyzko, A. M.: Irreducibility testing and factorization of polynomials. Math. Comput. 41 (1983), 699-709. | DOI | MR | Zbl
[2] Carroll, D., Jacobson, E., Somer, L.: Distribution of two-term recurrence sequences mod $p^e$. Fibonacci Q. 32 (1994), 260-265. | MR
[3] Dubickas, A.: Distribution of some quadratic linear recurrence sequences modulo 1. Carpathian J. Math. 30 (2014), 79-86. | MR
[4] Dubickas, A.: Arithmetical properties of powers of algebraic numbers. Bull. Lond. Math. Soc. 38 (2006), 70-80. | DOI | MR | Zbl
[5] Dubickas, A.: On the distance from a rational power to the nearest integer. J. Number Theory 117 (2006), 222-239. | DOI | MR | Zbl
[6] Everest, G., Poorten, A. van der, Shparlinski, I., Ward, T.: Recurrence Sequences. Mathematical Surveys and Monographs 104 American Mathematical Society, Providence (2003). | DOI | MR
[7] Kaneko, H.: Limit points of fractional parts of geometric sequences. Unif. Distrib. Theory 4 (2009), 1-37. | MR | Zbl
[8] Kaneko, H.: Distribution of geometric sequences modulo $1$. Result. Math. 52 (2008), 91-109. | DOI | MR | Zbl
[9] Lagarias, J. C., Odlyzko, A. M.: Effective versions of the Chebotarev density theorem. Algebraic Number Fields: $L$-Functions and Galois Properties Proc. Symp., Durham, 1975 A. Fröhlich Academic Press, London (1977), 409-464. | MR | Zbl
[10] Laksov, D.: Linear recurring sequences over finite fields. Math. Scand. 16 (1965), 181-196. | DOI | MR | Zbl
[11] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press Cambridge (1994). | MR | Zbl
[12] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322 Springer, Berlin (1999). | DOI | MR | Zbl
[13] Niederreiter, H., Schinzel, A., Somer, L.: Maximal frequencies of elements in second-order linear recurring sequences over a finite field. Elem. Math. 46 (1991), 139-143. | MR | Zbl
[14] Ribenboim, P., Walsh, G.: The ABC conjecture and the powerful part of terms in binary recurring sequences. J. Number Theory 74 (1999), 134-147. | DOI | MR | Zbl
[15] Schinzel, A.: Polynomials with special regard to reducibility. Encyclopedia of Mathematics and Its Applications 77 Cambridge University Press, Cambridge (2000). | MR | Zbl
[16] Schinzel, A.: Special Lucas sequences, including the Fibonacci sequence, modulo a prime. A Tribute to Paul Erdős A. Baker, et al. Cambridge University Press Cambridge (1990), 349-357. | MR | Zbl
[17] Somer, L.: Distribution of residues of certain second-order linear recurrences modulo $p$. Applications of Fibonacci Numbers, Vol. 3 G. E. Bergum, et al. Proc. 3rd Int. Conf., Pisa, 1988 Kluwer Academic Publishers Group, Dordrecht (1990), 311-324. | MR | Zbl
[18] Somer, L.: Primes having an incomplete system of residues for a class of second-order recurrences. Applications of Fibonacci Numbers, Proc. 2nd Int. Conf. A. N. Philippou, et al. Kluwer Academic Publishers Dordrecht (1988), 113-141. | MR | Zbl
[19] P. Stevenhagen, H. W. Lenstra, Jr.: Chebotarëv and his density theorem. Math. Intell. 18 (1996), 26-37. | DOI | MR | Zbl
[20] Voloch, J. F.: Chebyshev's method for number fields. J. Théor. Nombres Bordx. 12 (2000), 81-85. | DOI | Zbl
[21] Zaïmi, T.: An arithmetical property of powers of Salem numbers. J. Number Theory 120 (2006), 179-191. | DOI | MR | Zbl
[22] Zheng, Q.-X., Qi, W.-F., Tian, T.: On the distinctness of modular reductions of primitive sequences over ${\mathbb Z}/(2^{32}-1)$. Des. Codes Cryptography 70 (2014), 359-368. | DOI | MR
[23] Zhuravleva, V.: Diophantine approximations with Fibonacci numbers. J. Théor. Nombres Bordx. 25 (2013), 499-520. | DOI | MR | Zbl
[24] Zhuravleva, V.: On the two smallest Pisot numbers. Math. Notes 94 (2013), 820-823 translation from Mat. Zametki 94 784-787 (2013). | DOI | MR | Zbl
Cité par Sources :