Linear recurrence sequences without zeros
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 857-865.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $a_{d-1},\dots ,a_0 \in \mathbb Z$, where $d \in \mathbb N$ and $a_0 \neq 0$, and let $X=(x_n)_{n=1}^{\infty }$ be a sequence of integers given by the linear recurrence $x_{n+d}=a_{d-1}x_{n+d-1}+\dots +a_0x_{n}$ for $n=1,2,3,\dots $. We show that there are a prime number $p$ and $d$ integers $x_1,\dots ,x_d$ such that no element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined by the above linear recurrence is divisible by $p$. Furthermore, for any nonnegative integer $s$ there is a prime number $p \geq 3$ and $d$ integers $x_1,\dots ,x_d$ such that every element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined as above modulo $p$ belongs to the set $\{s+1,s+2,\dots ,p-s-1\}$.
DOI : 10.1007/s10587-014-0138-1
Classification : 11B37, 11B50, 11T06
Keywords: linear recurrence sequence; period modulo $p$; polynomial splitting in $\mathbb F_p[z]$
@article{10_1007_s10587_014_0138_1,
     author = {Dubickas, Art\={u}ras and Novikas, Aivaras},
     title = {Linear recurrence sequences without zeros},
     journal = {Czechoslovak Mathematical Journal},
     pages = {857--865},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2014},
     doi = {10.1007/s10587-014-0138-1},
     mrnumber = {3298566},
     zbl = {06391531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/}
}
TY  - JOUR
AU  - Dubickas, Artūras
AU  - Novikas, Aivaras
TI  - Linear recurrence sequences without zeros
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 857
EP  - 865
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/
DO  - 10.1007/s10587-014-0138-1
LA  - en
ID  - 10_1007_s10587_014_0138_1
ER  - 
%0 Journal Article
%A Dubickas, Artūras
%A Novikas, Aivaras
%T Linear recurrence sequences without zeros
%J Czechoslovak Mathematical Journal
%D 2014
%P 857-865
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/
%R 10.1007/s10587-014-0138-1
%G en
%F 10_1007_s10587_014_0138_1
Dubickas, Artūras; Novikas, Aivaras. Linear recurrence sequences without zeros. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 857-865. doi : 10.1007/s10587-014-0138-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0138-1/

Cité par Sources :