Edgeless graphs are the only universal fixers
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 833-843.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given two disjoint copies of a graph $G$, denoted $G^1$ and $G^2$, and a permutation $\pi $ of $V(G)$, the graph $\pi G$ is constructed by joining $u \in V(G^1)$ to $\pi (u) \in V(G^2)$ for all $u \in V(G^1)$. $G$ is said to be a universal fixer if the domination number of $\pi G$ is equal to the domination number of $G$ for all $\pi $ of $V(G)$. In 1999 it was conjectured that the only universal fixers are the edgeless graphs. Since then, a few partial results have been shown. In this paper, we prove the conjecture completely.
DOI : 10.1007/s10587-014-0136-3
Classification : 05C69
Keywords: universal fixer; domination
@article{10_1007_s10587_014_0136_3,
     author = {Wash, Kirsti},
     title = {Edgeless graphs are the only universal fixers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {833--843},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2014},
     doi = {10.1007/s10587-014-0136-3},
     mrnumber = {3298564},
     zbl = {06391529},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0136-3/}
}
TY  - JOUR
AU  - Wash, Kirsti
TI  - Edgeless graphs are the only universal fixers
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 833
EP  - 843
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0136-3/
DO  - 10.1007/s10587-014-0136-3
LA  - en
ID  - 10_1007_s10587_014_0136_3
ER  - 
%0 Journal Article
%A Wash, Kirsti
%T Edgeless graphs are the only universal fixers
%J Czechoslovak Mathematical Journal
%D 2014
%P 833-843
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0136-3/
%R 10.1007/s10587-014-0136-3
%G en
%F 10_1007_s10587_014_0136_3
Wash, Kirsti. Edgeless graphs are the only universal fixers. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 833-843. doi : 10.1007/s10587-014-0136-3. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0136-3/

Cité par Sources :