@article{10_1007_s10587_014_0136_3,
author = {Wash, Kirsti},
title = {Edgeless graphs are the only universal fixers},
journal = {Czechoslovak Mathematical Journal},
pages = {833--843},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0136-3},
mrnumber = {3298564},
zbl = {06391529},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0136-3/}
}
TY - JOUR AU - Wash, Kirsti TI - Edgeless graphs are the only universal fixers JO - Czechoslovak Mathematical Journal PY - 2014 SP - 833 EP - 843 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0136-3/ DO - 10.1007/s10587-014-0136-3 LA - en ID - 10_1007_s10587_014_0136_3 ER -
Wash, Kirsti. Edgeless graphs are the only universal fixers. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 833-843. doi: 10.1007/s10587-014-0136-3
[1] Burger, A. P., Mynhardt, C. M.: Regular graphs are not universal fixers. Discrete Math. 310 (2010), 364-368. | DOI | MR | Zbl
[2] Cockayne, E. J., Gibson, R. G., Mynhardt, C. M.: Claw-free graphs are not universal fixers. Discrete Math. 309 (2009), 128-133. | DOI | MR | Zbl
[3] Gibson, R. G.: Bipartite graphs are not universal fixers. Discrete Math. 308 (2008), 5937-5943. | DOI | MR | Zbl
[4] Gu, W.: Communication with S. T. Hedetniemi. Southeastern Conference on Combinatorics, Graph Theory, and Computing. Newfoundland, Canada, 1999.
[5] Gu, W., Wash, K.: Bounds on the domination number of permutation graphs. J. Interconnection Networks 10 (2009), 205-217. | DOI
[6] Hartnell, B. L., Rall, D. F.: On dominating the Cartesian product of a graph and $K_2$. Discuss. Math., Graph Theory 24 (2004), 389-402. | DOI | MR | Zbl
[7] Mynhardt, C. M., Xu, Z.: Domination in prisms of graphs: universal fixers. Util. Math. 78 (2009), 185-201. | MR | Zbl
Cité par Sources :