Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10587_014_0135_4, author = {Shao, Changguo and Jiang, Qinhui}, title = {Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements}, journal = {Czechoslovak Mathematical Journal}, pages = {827--831}, publisher = {mathdoc}, volume = {64}, number = {3}, year = {2014}, doi = {10.1007/s10587-014-0135-4}, mrnumber = {3298563}, zbl = {06391528}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/} }
TY - JOUR AU - Shao, Changguo AU - Jiang, Qinhui TI - Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements JO - Czechoslovak Mathematical Journal PY - 2014 SP - 827 EP - 831 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/ DO - 10.1007/s10587-014-0135-4 LA - en ID - 10_1007_s10587_014_0135_4 ER -
%0 Journal Article %A Shao, Changguo %A Jiang, Qinhui %T Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements %J Czechoslovak Mathematical Journal %D 2014 %P 827-831 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/ %R 10.1007/s10587-014-0135-4 %G en %F 10_1007_s10587_014_0135_4
Shao, Changguo; Jiang, Qinhui. Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 827-831. doi : 10.1007/s10587-014-0135-4. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/
Cité par Sources :