Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 827-831.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups $G$ whose set of numbers of subgroups of possible orders $n(G)$ has exactly two elements. We show that if $G$ is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then $G$ has a normal Sylow subgroup of prime order and $G $ is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with $n(G)=\{1, q+1\}$ for some prime $q$. In particular, $G$ is supersolvable under this condition.
DOI : 10.1007/s10587-014-0135-4
Classification : 20E07, 20E45
Keywords: finite group; number of subgroups of possible orders
@article{10_1007_s10587_014_0135_4,
     author = {Shao, Changguo and Jiang, Qinhui},
     title = {Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {827--831},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2014},
     doi = {10.1007/s10587-014-0135-4},
     mrnumber = {3298563},
     zbl = {06391528},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/}
}
TY  - JOUR
AU  - Shao, Changguo
AU  - Jiang, Qinhui
TI  - Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 827
EP  - 831
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/
DO  - 10.1007/s10587-014-0135-4
LA  - en
ID  - 10_1007_s10587_014_0135_4
ER  - 
%0 Journal Article
%A Shao, Changguo
%A Jiang, Qinhui
%T Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements
%J Czechoslovak Mathematical Journal
%D 2014
%P 827-831
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/
%R 10.1007/s10587-014-0135-4
%G en
%F 10_1007_s10587_014_0135_4
Shao, Changguo; Jiang, Qinhui. Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 827-831. doi : 10.1007/s10587-014-0135-4. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/

Cité par Sources :