Keywords: finite group; number of subgroups of possible orders
@article{10_1007_s10587_014_0135_4,
author = {Shao, Changguo and Jiang, Qinhui},
title = {Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements},
journal = {Czechoslovak Mathematical Journal},
pages = {827--831},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0135-4},
mrnumber = {3298563},
zbl = {06391528},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/}
}
TY - JOUR AU - Shao, Changguo AU - Jiang, Qinhui TI - Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements JO - Czechoslovak Mathematical Journal PY - 2014 SP - 827 EP - 831 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/ DO - 10.1007/s10587-014-0135-4 LA - en ID - 10_1007_s10587_014_0135_4 ER -
%0 Journal Article %A Shao, Changguo %A Jiang, Qinhui %T Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements %J Czechoslovak Mathematical Journal %D 2014 %P 827-831 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0135-4/ %R 10.1007/s10587-014-0135-4 %G en %F 10_1007_s10587_014_0135_4
Shao, Changguo; Jiang, Qinhui. Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 827-831. doi: 10.1007/s10587-014-0135-4
[1] Bhowmik, G.: Evaluation of divisor functions of matrices. Acta Arith. 74 (1996), 155-159. | DOI | MR | Zbl
[2] Guo, W. B.: Finite groups with given normalizers of Sylow subgroups. II. Acta Math. Sin. 39 Chinese (1996), 509-513. | MR | Zbl
[3] M. Hall, Jr.: The Theory of Groups. Macmillan Company, New York (1959). | MR | Zbl
[4] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). | MR | Zbl
[5] Qu, H., Sun, Y., Zhang, Q.: Finite $p$-groups in which the number of subgroups of possible order is less than or equal to $p^3$. Chin. Ann. Math., Ser. B 31 (2010), 497-506. | DOI | MR | Zbl
[6] Shao, C., Shi, W., Jiang, Q.: Characterization of simple $K_4$-groups. Front. Math. China 3 (2008), 355-370. | DOI | MR | Zbl
[7] Tang, F.: Finite groups with exactly two conjugacy class sizes of subgroups. Acta Math. Sin., Chin. Ser. 54 Chinese (2011), 619-622. | MR | Zbl
[8] Tărnăuceanu, M.: Counting subgroups for a class of finite nonabelian $p$-groups. An. Univ. Vest Timiş., Ser. Mat.-Inform. 46 (2008), 145-150. | MR | Zbl
[9] Zhang, J.: Sylow numbers of finite groups. J. Algebra 176 (1995), 111-123. | DOI | MR | Zbl
Cité par Sources :