Gosset polytopes in integral octonions
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 683-702 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the integral quaternions and the integral octonions along the combinatorics of the $24$-cell, a uniform polytope with the symmetry $D_{4}$, and the Gosset polytope $4_{21}$ with the symmetry $E_{8}$. We identify the set of the unit integral octonions or quaternions as a Gosset polytope $4_{21}$ or a $24$-cell and describe the subsets of integral numbers having small length as certain combinations of unit integral numbers according to the $E_{8}$ or $D_{4}$ actions on the $4_{21}$ or the $24$-cell, respectively. Moreover, we show that each level set in the unit integral numbers forms a uniform polytope, and we explain the dualities between them. In particular, the set of the pure unit integral octonions is identified as a uniform polytope $2_{31}$ with the symmetry $E_{7}$, and it is a dual polytope to a Gosset polytope $3_{21}$ with the symmetry $E_{7}$ which is the set of the unit integral octonions with $\operatorname {Re}=1/2$.
We study the integral quaternions and the integral octonions along the combinatorics of the $24$-cell, a uniform polytope with the symmetry $D_{4}$, and the Gosset polytope $4_{21}$ with the symmetry $E_{8}$. We identify the set of the unit integral octonions or quaternions as a Gosset polytope $4_{21}$ or a $24$-cell and describe the subsets of integral numbers having small length as certain combinations of unit integral numbers according to the $E_{8}$ or $D_{4}$ actions on the $4_{21}$ or the $24$-cell, respectively. Moreover, we show that each level set in the unit integral numbers forms a uniform polytope, and we explain the dualities between them. In particular, the set of the pure unit integral octonions is identified as a uniform polytope $2_{31}$ with the symmetry $E_{7}$, and it is a dual polytope to a Gosset polytope $3_{21}$ with the symmetry $E_{7}$ which is the set of the unit integral octonions with $\operatorname {Re}=1/2$.
DOI : 10.1007/s10587-014-0126-5
Classification : 06B99, 11Z05, 52B20
Keywords: integral octonion; 24-cell; Gosset polytope
@article{10_1007_s10587_014_0126_5,
     author = {Chang, Woo-Nyoung and Lee, Jae-Hyouk and Lee, Sung Hwan and Lee, Young Jun},
     title = {Gosset polytopes in integral octonions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {683--702},
     year = {2014},
     volume = {64},
     number = {3},
     doi = {10.1007/s10587-014-0126-5},
     mrnumber = {3298554},
     zbl = {06391519},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0126-5/}
}
TY  - JOUR
AU  - Chang, Woo-Nyoung
AU  - Lee, Jae-Hyouk
AU  - Lee, Sung Hwan
AU  - Lee, Young Jun
TI  - Gosset polytopes in integral octonions
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 683
EP  - 702
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0126-5/
DO  - 10.1007/s10587-014-0126-5
LA  - en
ID  - 10_1007_s10587_014_0126_5
ER  - 
%0 Journal Article
%A Chang, Woo-Nyoung
%A Lee, Jae-Hyouk
%A Lee, Sung Hwan
%A Lee, Young Jun
%T Gosset polytopes in integral octonions
%J Czechoslovak Mathematical Journal
%D 2014
%P 683-702
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0126-5/
%R 10.1007/s10587-014-0126-5
%G en
%F 10_1007_s10587_014_0126_5
Chang, Woo-Nyoung; Lee, Jae-Hyouk; Lee, Sung Hwan; Lee, Young Jun. Gosset polytopes in integral octonions. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 683-702. doi: 10.1007/s10587-014-0126-5

[1] Baez, J. C.: The octonions. Bull. Am. Math. Soc., New. Ser. 39 (2002), 145-205 errata ibid. 42 (2005), 213. | DOI | MR

[2] Conway, J. H., Smith, D. A.: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A K Peters Natick (2003). | MR | Zbl

[3] Coxeter, H. S. M.: Integral Cayley numbers. Duke Math. J. 13 (1946), 561-578. | DOI | MR | Zbl

[4] Coxeter, H. S. M.: Regular and semi-regular polytopes II. Math. Z. 188 (1985), 559-591. | DOI | MR | Zbl

[5] Coxeter, H. S. M.: Regular and semi-regular polytopes III. Math. Z. 200 (1988), 3-45. | MR | Zbl

[6] Coxeter, H. S. M.: Regular Complex Polytopes. 2nd ed. Cambridge University Press New York (1991). | MR | Zbl

[7] Coxeter, H. S. M.: The evolution of Coxeter-Dynkin diagrams. Nieuw Arch. Wiskd. 9 (1991), 233-248. | MR | Zbl

[8] Koca, M.: $E_8$ lattice with icosians and $Z_5$ symmetry. J. Phys. A, Math. Gen. 22 (1989), 4125-4134. | DOI | MR

[9] Koca, M., Koç, R.: Automorphism groups of pure integral octonions. J. Phys. A, Math. Gen. 27 (1994), 2429-2442. | DOI | MR | Zbl

[10] Koca, M., Ozdes, N.: Division algebras with integral elements. J. Phys. A, Math. Gen. 22 (1989), 1469-1493. | DOI | MR | Zbl

[11] Lee, J.-H.: Configurations of lines in del Pezzo surfaces with Gosset polytopes. Trans. Amer. Math. Soc. 366 (2014), 4939-4967. | DOI | MR

[12] Lee, J.-H.: Gosset polytopes in Picard groups of del Pezzo surfaces. Can. J. Math. 64 (2012), 123-150. | DOI | MR | Zbl

Cité par Sources :