Join of two graphs admits a nowhere-zero $3$-flow
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 433-446
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a graph, and $\lambda $ the smallest integer for which $G$ has a nowhere-zero $\lambda $-flow, i.e., an integer $\lambda $ for which $G$ admits a nowhere-zero $\lambda $-flow, but it does not admit a $(\lambda -1)$-flow. We denote the minimum flow number of $G$ by $\Lambda (G)$. In this paper we show that if $G$ and $H$ are two arbitrary graphs and $G$ has no isolated vertex, then $\Lambda (G \vee H) \leq 3$ except two cases: (i) One of the graphs $G$ and $H$ is $K_2$ and the other is $1$-regular. (ii) $H = K_1$ and $G$ is a graph with at least one isolated vertex or a component whose every block is an odd cycle. Among other results, we prove that for every two graphs $G$ and $H$ with at least $4$ vertices, $\Lambda (G \vee H) \leq 3$.
DOI :
10.1007/s10587-014-0110-0
Classification :
05C20, 05C21, 05C78
Keywords: nowhere-zero $\lambda $-flow; minimum nowhere-zero flow number; join of two graphs
Keywords: nowhere-zero $\lambda $-flow; minimum nowhere-zero flow number; join of two graphs
@article{10_1007_s10587_014_0110_0,
author = {Akbari, Saieed and Aliakbarpour, Maryam and Ghanbari, Naryam and Nategh, Emisa and Shahmohamad, Hossein},
title = {Join of two graphs admits a nowhere-zero $3$-flow},
journal = {Czechoslovak Mathematical Journal},
pages = {433--446},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2014},
doi = {10.1007/s10587-014-0110-0},
mrnumber = {3277745},
zbl = {06391503},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0110-0/}
}
TY - JOUR AU - Akbari, Saieed AU - Aliakbarpour, Maryam AU - Ghanbari, Naryam AU - Nategh, Emisa AU - Shahmohamad, Hossein TI - Join of two graphs admits a nowhere-zero $3$-flow JO - Czechoslovak Mathematical Journal PY - 2014 SP - 433 EP - 446 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0110-0/ DO - 10.1007/s10587-014-0110-0 LA - en ID - 10_1007_s10587_014_0110_0 ER -
%0 Journal Article %A Akbari, Saieed %A Aliakbarpour, Maryam %A Ghanbari, Naryam %A Nategh, Emisa %A Shahmohamad, Hossein %T Join of two graphs admits a nowhere-zero $3$-flow %J Czechoslovak Mathematical Journal %D 2014 %P 433-446 %V 64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0110-0/ %R 10.1007/s10587-014-0110-0 %G en %F 10_1007_s10587_014_0110_0
Akbari, Saieed; Aliakbarpour, Maryam; Ghanbari, Naryam; Nategh, Emisa; Shahmohamad, Hossein. Join of two graphs admits a nowhere-zero $3$-flow. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 433-446. doi: 10.1007/s10587-014-0110-0
Cité par Sources :