Mots-clés : unit group; class group; Hilbert class field; genus field; capitulation of ideal
@article{10_1007_s10587_014_0078_9,
author = {Azizi, Abdelmalek and Zekhnini, Abdelkader and Taous, Mohammed},
title = {Sur un probl\`eme de capitulation du corps $\mathbb {Q}(\sqrt {p_1p_2},\rm i)$ dont le $2$-groupe de classes est \'el\'ementaire},
journal = {Czechoslovak Mathematical Journal},
pages = {11--29},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0078-9},
mrnumber = {3247439},
zbl = {06391471},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0078-9/}
}
TY - JOUR
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
AU - Taous, Mohammed
TI - Sur un problème de capitulation du corps $\mathbb {Q}(\sqrt {p_1p_2},\rm i)$ dont le $2$-groupe de classes est élémentaire
JO - Czechoslovak Mathematical Journal
PY - 2014
SP - 11
EP - 29
VL - 64
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0078-9/
DO - 10.1007/s10587-014-0078-9
LA - fr
ID - 10_1007_s10587_014_0078_9
ER -
%0 Journal Article
%A Azizi, Abdelmalek
%A Zekhnini, Abdelkader
%A Taous, Mohammed
%T Sur un problème de capitulation du corps $\mathbb {Q}(\sqrt {p_1p_2},\rm i)$ dont le $2$-groupe de classes est élémentaire
%J Czechoslovak Mathematical Journal
%D 2014
%P 11-29
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0078-9/
%R 10.1007/s10587-014-0078-9
%G fr
%F 10_1007_s10587_014_0078_9
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed. Sur un problème de capitulation du corps $\mathbb {Q}(\sqrt {p_1p_2},\rm i)$ dont le $2$-groupe de classes est élémentaire. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 11-29. doi: 10.1007/s10587-014-0078-9
[1] Azizi, A.: Units of certain imaginary abelian number fields over $\Bbb Q$. French Ann. Sci. Math. Qué. 23 15-21 (1999). | MR | Zbl
[2] Azizi, A.: Capitulation of the $2$-ideal classes of $\mathbb{Q}(\sqrt{p_1p_2}, \rm i )$ where $p_1$ and $p_2$ are primes such that $p_1\equiv 1 \pmod 8$, $p_2\equiv 5 \pmod 8$ and $(\frac{p_1}{p_2})=-1$. Algebra and Number Theory Boulagouaz, M'hammed et al. Proceedings of a conference, Fez, Morocco. Lect. Notes Pure Appl. Math. 208 Marcel Dekker, New York 13-19 (2000). | MR
[3] Azizi, A.: Construction of the 2-Hilbert class field tower of some biquadratic fields. French Pac. J. Math. 208 (2003), 1-10. | DOI | MR | Zbl
[4] Azizi, A.: On the units of certain number fields of degree 8 over $\Bbb Q$. Ann. Sci. Math. Qué. 29 (2005), 111-129. | MR | Zbl
[5] Azizi, A., Taous, M.: Determination of the fields $K=\Bbb Q(\sqrt d,\sqrt{-1})$, given the 2-class groups are of type $(2,4)$ or $(2,2,2)$. French. English summary Rend. Ist. Mat. Univ. Trieste 40 (2008), 93-116. | MR | Zbl
[6] Barruccand, P., Cohn, H.: Note on primes of type $x^2+32y^2$, class number, and residuacity. J. Reine Angew. Math. 238 (1969), 67-70. | MR
[7] Batut, C., Belabas, K., Bernadi, D., Cohen, H., Olivier, M.: GP/PARI calculator Version 2.2.6. (2003).
[8] Heider, F. P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. German J. Reine Angew. Math. 336 (1982), 1-25. | MR | Zbl
[9] Hilbert, D.: On the theory of the relative quadratic number field. Math. Ann. 51 (1899), 1-127.
[10] Kaplan, P.: Sur le $2$-groupe de classes d'idéaux des corps quadratiques. French J. Reine Angew. Math. 283/284 (1976), 313-363. | MR
[11] Lemmermeyer, F.: Reciprocity Laws. From Euler to Eisenstein. Springer Monographs in Mathematics, Springer, Berlin (2000). | MR | Zbl
[12] Parry, T. M. McCall. C. J., Ranalli, R. R.: Imaginary bicyclic biquadratic fields with cyclic $2$-class group. J. Number Theory 53 (1995), 88-99. | DOI | MR | Zbl
[13] Scholz, A.: Über die Lösbarkeit der Gleichung $t^2-Du^2=-4$. Math. Z. German 39 (1934), 95-111. | DOI
Cité par Sources :