Keywords: Fermat quotient; $n$th harmonic number of order $m$; Bernoulli number
@article{10_1007_s10587_013_0064_7,
author = {Me\v{s}trovi\'c, Romeo},
title = {Congruences involving the {Fermat} quotient},
journal = {Czechoslovak Mathematical Journal},
pages = {949--968},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0064-7},
mrnumber = {3165507},
zbl = {06373954},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0064-7/}
}
TY - JOUR AU - Meštrović, Romeo TI - Congruences involving the Fermat quotient JO - Czechoslovak Mathematical Journal PY - 2013 SP - 949 EP - 968 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0064-7/ DO - 10.1007/s10587-013-0064-7 LA - en ID - 10_1007_s10587_013_0064_7 ER -
Meštrović, Romeo. Congruences involving the Fermat quotient. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 949-968. doi: 10.1007/s10587-013-0064-7
[1] Agoh, T., Dilcher, K., Skula, L.: Fermat quotients for composite moduli. J. Number Theory 66 (1997), 29-50. | DOI | MR | Zbl
[2] Agoh, T., Dilcher, K., Skula, L.: Wilson quotients for composite moduli. Math. Comput. 67 (1998), 843-861. | DOI | MR | Zbl
[3] Agoh, T., Skula, L.: The fourth power of the Fermat quotient. J. Number Theory 128 (2008), 2865-2873. | DOI | MR | Zbl
[4] Cao, H.-Q., Pan, H.: A congruence involving products of $q$-binomial coefficients. J. Number Theory 121 (2006), 224-233. | DOI | MR | Zbl
[5] Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes. Math. Comp. 66 (1997), 433-449. | DOI | MR | Zbl
[6] Dilcher, K., Skula, L.: A new criterion for the first case of Fermat's last theorem. Math. Comput. 64 (1995), 363-392. | MR | Zbl
[7] Dilcher, K., Skula, L.: The cube of the Fermat quotient. Integers (electronic only) 6 (2006), Paper A24, 12 pages. | MR | Zbl
[8] Dilcher, K., Skula, L., Slavutskii, I. S., eds.: Bernoulli numbers. Bibliography (1713-1990). Enlarged ed. Queen's Papers in Pure and Applied Mathematics 87. Queen's University Kingston (1991). | MR
[9] Dobson, J. B.: On Lerch's formula for the Fermat quotient. Preprint, arXiv:1103.3907v3, 2012.
[10] Dorais, F. G., Klyve, D.: A Wieferich prime search up to $6\cdot 7\times 10^{15}$. J. Integer Seq. (electronic only) 14 (2011), Article 11.9.2, 14 pages. | MR
[11] Eisenstein, G.: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden. Bericht. K. Preuss. Akad. Wiss. Berlin 15 (1850), 36-42
Cité par Sources :