Congruences involving the Fermat quotient
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 949-968.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p>3$ be a prime, and let $q_p(2)=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base $2$. In this note we prove that $$ \sum _{k=1}^{p-1} \frac {1}{k\cdot 2^k} \equiv q_p(2)-\frac {pq_p(2)^2}{2}+ \frac {p^2 q_p(2)^3}{3} -\frac {7}{48} p^2 B_{p-3}\pmod {p^3}, $$ which is a generalization of a congruence due to Z. H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z. H. Sun, we show that $$ q_p(2)^3 \equiv -3\sum _{k=1}^{p-1} \frac {2^k}{k^3}+ \frac {7}{16} \sum _{k=1}^{(p-1)/2} \frac {1}{k^3} \pmod {p}, $$ which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum $\sum _{k=1}^{p-1}1/(k^2\cdot 2^k)$ modulo $p^2$ that also generalizes a related Sun's congruence modulo $p$.
DOI : 10.1007/s10587-013-0064-7
Classification : 05A10, 05A19, 11A07, 11B65
Keywords: Fermat quotient; $n$th harmonic number of order $m$; Bernoulli number
@article{10_1007_s10587_013_0064_7,
     author = {Me\v{s}trovi\'c, Romeo},
     title = {Congruences involving the {Fermat} quotient},
     journal = {Czechoslovak Mathematical Journal},
     pages = {949--968},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.1007/s10587-013-0064-7},
     mrnumber = {3165507},
     zbl = {06373954},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0064-7/}
}
TY  - JOUR
AU  - Meštrović, Romeo
TI  - Congruences involving the Fermat quotient
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 949
EP  - 968
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0064-7/
DO  - 10.1007/s10587-013-0064-7
LA  - en
ID  - 10_1007_s10587_013_0064_7
ER  - 
%0 Journal Article
%A Meštrović, Romeo
%T Congruences involving the Fermat quotient
%J Czechoslovak Mathematical Journal
%D 2013
%P 949-968
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0064-7/
%R 10.1007/s10587-013-0064-7
%G en
%F 10_1007_s10587_013_0064_7
Meštrović, Romeo. Congruences involving the Fermat quotient. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 949-968. doi : 10.1007/s10587-013-0064-7. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0064-7/

Cité par Sources :