Keywords: elliptic curve; integral point; quadratic diophantine equation
@article{10_1007_s10587_013_0023_3,
author = {Yang, Hai and Fu, Ruiqin},
title = {The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$},
journal = {Czechoslovak Mathematical Journal},
pages = {375--383},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0023-3},
mrnumber = {3073964},
zbl = {06236417},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/}
}
TY - JOUR AU - Yang, Hai AU - Fu, Ruiqin TI - The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ JO - Czechoslovak Mathematical Journal PY - 2013 SP - 375 EP - 383 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/ DO - 10.1007/s10587-013-0023-3 LA - en ID - 10_1007_s10587_013_0023_3 ER -
%0 Journal Article %A Yang, Hai %A Fu, Ruiqin %T The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ %J Czechoslovak Mathematical Journal %D 2013 %P 375-383 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/ %R 10.1007/s10587-013-0023-3 %G en %F 10_1007_s10587_013_0023_3
Yang, Hai; Fu, Ruiqin. The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383. doi: 10.1007/s10587-013-0023-3
[1] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$. J. Lond. Math. Soc. 43 (1968), 1-9. | DOI | MR | Zbl
[2] He, Y., Zhang, W.: An elliptic curve having large integral points. Czech. Math. J. 60 (2010), 1101-1107. | DOI | MR | Zbl
[3] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30. Academic Press, London (1969). | MR | Zbl
[4] Petr, K.: On Pell's equation. Čas. Mat. Fys. 56 (1927), Czech, French abstract 57-66.
[5] Stroeker, R. J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: Reflections and an improvement. Exp. Math. 8 (1999), 135-149. | DOI | MR | Zbl
[6] Stroeker, R. J., Tzanakis, N.: Computing all integer solutions of a genus $1$ equation. Math. Comput. 72 (2003), 1917-1933. | DOI | MR | Zbl
[7] Togbé, A., Voutier, P. M., Walsh, P. G.: Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$. Acta Arith. 120 (2005), 39-58. | MR
[8] Walker, D. T.: On the Diophantine equation $mX^2-nY^2=\pm1$. Am. Math. Mon. 74 (1967), 504-513. | DOI | MR
[9] Walsh, P. G.: A note on a theorem of Ljunggren and the diophantine equations $x^2-kxy^2+y^4=1,4$. Arch. Math. 73 (1999), 119-125. | DOI | MR
[10] Zagier, D.: Large integral points on elliptic curves. Math. Comput. 48 (1987), 425-436. | DOI | MR | Zbl
[11] Zhu, H., Chen, J.: Integral points on $y^2=x^3+27x-62$. J. Math. Study 42 (2009), 117-125. | MR
Cité par Sources :