Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10587_013_0023_3, author = {Yang, Hai and Fu, Ruiqin}, title = {The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$}, journal = {Czechoslovak Mathematical Journal}, pages = {375--383}, publisher = {mathdoc}, volume = {63}, number = {2}, year = {2013}, doi = {10.1007/s10587-013-0023-3}, mrnumber = {3073964}, zbl = {06236417}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/} }
TY - JOUR AU - Yang, Hai AU - Fu, Ruiqin TI - The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ JO - Czechoslovak Mathematical Journal PY - 2013 SP - 375 EP - 383 VL - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/ DO - 10.1007/s10587-013-0023-3 LA - en ID - 10_1007_s10587_013_0023_3 ER -
%0 Journal Article %A Yang, Hai %A Fu, Ruiqin %T The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ %J Czechoslovak Mathematical Journal %D 2013 %P 375-383 %V 63 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/ %R 10.1007/s10587-013-0023-3 %G en %F 10_1007_s10587_013_0023_3
Yang, Hai; Fu, Ruiqin. The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383. doi : 10.1007/s10587-013-0023-3. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/
Cité par Sources :