The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points.
Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points.
DOI :
10.1007/s10587-013-0023-3
Classification :
11D25, 11G05, 14G05
Keywords: elliptic curve; integral point; quadratic diophantine equation
Keywords: elliptic curve; integral point; quadratic diophantine equation
@article{10_1007_s10587_013_0023_3,
author = {Yang, Hai and Fu, Ruiqin},
title = {The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$},
journal = {Czechoslovak Mathematical Journal},
pages = {375--383},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0023-3},
mrnumber = {3073964},
zbl = {06236417},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/}
}
TY - JOUR AU - Yang, Hai AU - Fu, Ruiqin TI - The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ JO - Czechoslovak Mathematical Journal PY - 2013 SP - 375 EP - 383 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/ DO - 10.1007/s10587-013-0023-3 LA - en ID - 10_1007_s10587_013_0023_3 ER -
%0 Journal Article %A Yang, Hai %A Fu, Ruiqin %T The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ %J Czechoslovak Mathematical Journal %D 2013 %P 375-383 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/ %R 10.1007/s10587-013-0023-3 %G en %F 10_1007_s10587_013_0023_3
Yang, Hai; Fu, Ruiqin. The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383. doi: 10.1007/s10587-013-0023-3
Cité par Sources :