The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points.
Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points.
DOI : 10.1007/s10587-013-0023-3
Classification : 11D25, 11G05, 14G05
Keywords: elliptic curve; integral point; quadratic diophantine equation
@article{10_1007_s10587_013_0023_3,
     author = {Yang, Hai and Fu, Ruiqin},
     title = {The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {375--383},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0023-3},
     mrnumber = {3073964},
     zbl = {06236417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/}
}
TY  - JOUR
AU  - Yang, Hai
AU  - Fu, Ruiqin
TI  - The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 375
EP  - 383
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/
DO  - 10.1007/s10587-013-0023-3
LA  - en
ID  - 10_1007_s10587_013_0023_3
ER  - 
%0 Journal Article
%A Yang, Hai
%A Fu, Ruiqin
%T The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$
%J Czechoslovak Mathematical Journal
%D 2013
%P 375-383
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/
%R 10.1007/s10587-013-0023-3
%G en
%F 10_1007_s10587_013_0023_3
Yang, Hai; Fu, Ruiqin. The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383. doi: 10.1007/s10587-013-0023-3

[1] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$. J. Lond. Math. Soc. 43 (1968), 1-9. | DOI | MR | Zbl

[2] He, Y., Zhang, W.: An elliptic curve having large integral points. Czech. Math. J. 60 (2010), 1101-1107. | DOI | MR | Zbl

[3] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30. Academic Press, London (1969). | MR | Zbl

[4] Petr, K.: On Pell's equation. Čas. Mat. Fys. 56 (1927), Czech, French abstract 57-66.

[5] Stroeker, R. J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: Reflections and an improvement. Exp. Math. 8 (1999), 135-149. | DOI | MR | Zbl

[6] Stroeker, R. J., Tzanakis, N.: Computing all integer solutions of a genus $1$ equation. Math. Comput. 72 (2003), 1917-1933. | DOI | MR | Zbl

[7] Togbé, A., Voutier, P. M., Walsh, P. G.: Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$. Acta Arith. 120 (2005), 39-58. | MR

[8] Walker, D. T.: On the Diophantine equation $mX^2-nY^2=\pm1$. Am. Math. Mon. 74 (1967), 504-513. | DOI | MR

[9] Walsh, P. G.: A note on a theorem of Ljunggren and the diophantine equations $x^2-kxy^2+y^4=1,4$. Arch. Math. 73 (1999), 119-125. | DOI | MR

[10] Zagier, D.: Large integral points on elliptic curves. Math. Comput. 48 (1987), 425-436. | DOI | MR | Zbl

[11] Zhu, H., Chen, J.: Integral points on $y^2=x^3+27x-62$. J. Math. Study 42 (2009), 117-125. | MR

Cité par Sources :