The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points.
DOI : 10.1007/s10587-013-0023-3
Classification : 11D25, 11G05, 14G05
Keywords: elliptic curve; integral point; quadratic diophantine equation
@article{10_1007_s10587_013_0023_3,
     author = {Yang, Hai and Fu, Ruiqin},
     title = {The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {375--383},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2013},
     doi = {10.1007/s10587-013-0023-3},
     mrnumber = {3073964},
     zbl = {06236417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/}
}
TY  - JOUR
AU  - Yang, Hai
AU  - Fu, Ruiqin
TI  - The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 375
EP  - 383
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/
DO  - 10.1007/s10587-013-0023-3
LA  - en
ID  - 10_1007_s10587_013_0023_3
ER  - 
%0 Journal Article
%A Yang, Hai
%A Fu, Ruiqin
%T The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$
%J Czechoslovak Mathematical Journal
%D 2013
%P 375-383
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/
%R 10.1007/s10587-013-0023-3
%G en
%F 10_1007_s10587_013_0023_3
Yang, Hai; Fu, Ruiqin. The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 375-383. doi : 10.1007/s10587-013-0023-3. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0023-3/

Cité par Sources :