Keywords: not strongly continuous semigroups; bi-continuous semigroups; adjoint semigroup; mixed-topology; strict topology; one-parameter semigroups on the space of measures
@article{10_1007_s10587_011_0076_0,
author = {Farkas, B\'alint},
title = {Adjoint bi-continuous semigroups and semigroups on the space of measures},
journal = {Czechoslovak Mathematical Journal},
pages = {309--322},
year = {2011},
volume = {61},
number = {2},
doi = {10.1007/s10587-011-0076-0},
mrnumber = {2905405},
zbl = {1249.47021},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0076-0/}
}
TY - JOUR AU - Farkas, Bálint TI - Adjoint bi-continuous semigroups and semigroups on the space of measures JO - Czechoslovak Mathematical Journal PY - 2011 SP - 309 EP - 322 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0076-0/ DO - 10.1007/s10587-011-0076-0 LA - en ID - 10_1007_s10587_011_0076_0 ER -
%0 Journal Article %A Farkas, Bálint %T Adjoint bi-continuous semigroups and semigroups on the space of measures %J Czechoslovak Mathematical Journal %D 2011 %P 309-322 %V 61 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0076-0/ %R 10.1007/s10587-011-0076-0 %G en %F 10_1007_s10587_011_0076_0
Farkas, Bálint. Adjoint bi-continuous semigroups and semigroups on the space of measures. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 309-322. doi: 10.1007/s10587-011-0076-0
[1] Albanese, A. A., Manco, V., Lorenzi, L.: Mean ergodic theorems for bi-continuous semigroups. Semigroup Forum 82 (2011), 141-171. | DOI | MR
[2] Albanese, A. A., Mangino, E.: Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups. J. Math. Anal. Appl. 289 (2004), 477-492. | DOI | MR | Zbl
[3] Alber, J.: On implemented semigroups. Semigroup Forum 63 (2001), 371-386. | DOI | MR | Zbl
[4] Alexandroff, A. D.: Additive set-functions in abstract spaces. Mat. Sb. N. Ser. 13 (1943), 169-238. | MR | Zbl
[5] Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994), 349-367. | DOI | MR
[6] Dorroh, J. R., Neuberger, J. W.: Lie generators for semigroups of transformations on a Polish space. Electronic J. Diff. Equ. 1 (1993), 1-7. | MR | Zbl
[7] Dorroh, J. R., Neuberger, J. W.: A theory of strongly continuous semigroups in terms of Lie generators. J. Funct. Anal. 136 (1996), 114-126. | DOI | MR | Zbl
[8] Edgar, G. A.: Measurability in a Banach space, II. Indiana Univ. Math. J. 28 (1979), 559-579. | DOI | MR | Zbl
[9] Es-Sarhir, A., Farkas, B.: Perturbation for a class of transition semigroups on the Hölder space $C^\theta_{b, loc}(H)$. J. Math. Anal. Appl. 315 (2006), 666-685. | DOI | MR | Zbl
[9] Es-Sarhir, A., Farkas, B.: Perturbation for a class of transition semigroups on the Hölder space $C^\theta_{b, loc}(H)$. J. Math. Anal. Appl. 315 (2006), 666-685. | DOI | MR | Zbl
Cité par Sources :