Adjoint bi-continuous semigroups and semigroups on the space of measures
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 309-322.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a given bi-continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space $X$ we define its adjoint on an appropriate closed subspace $X^\circ $ of the norm dual $X'$. Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology $\sigma (X^\circ ,X)$. We give the following application: For $\Omega $ a Polish space we consider operator semigroups on the space ${\rm C_b}(\Omega )$ of bounded, continuous functions (endowed with the compact-open topology) and on the space ${\rm M}(\Omega )$ of bounded Baire measures (endowed with the weak$^*$-topology). We show that bi-continuous semigroups on ${\rm M}(\Omega )$ are precisely those that are adjoints of bi-continuous semigroups on ${\rm C_b}(\Omega )$. We also prove that the class of bi-continuous semigroups on ${\rm C_b}(\Omega )$ with respect to the compact-open topology coincides with the class of equicontinuous semigroups with respect to the strict topology. In general, if $\Omega $ is not a Polish space this is not the case.
DOI : 10.1007/s10587-011-0076-0
Classification : 46A03, 47D03, 47D06, 47D99
Keywords: not strongly continuous semigroups; bi-continuous semigroups; adjoint semigroup; mixed-topology; strict topology; one-parameter semigroups on the space of measures
@article{10_1007_s10587_011_0076_0,
     author = {Farkas, B\'alint},
     title = {Adjoint bi-continuous semigroups and semigroups  on the space of measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {309--322},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2011},
     doi = {10.1007/s10587-011-0076-0},
     mrnumber = {2905405},
     zbl = {1249.47021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0076-0/}
}
TY  - JOUR
AU  - Farkas, Bálint
TI  - Adjoint bi-continuous semigroups and semigroups  on the space of measures
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 309
EP  - 322
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0076-0/
DO  - 10.1007/s10587-011-0076-0
LA  - en
ID  - 10_1007_s10587_011_0076_0
ER  - 
%0 Journal Article
%A Farkas, Bálint
%T Adjoint bi-continuous semigroups and semigroups  on the space of measures
%J Czechoslovak Mathematical Journal
%D 2011
%P 309-322
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0076-0/
%R 10.1007/s10587-011-0076-0
%G en
%F 10_1007_s10587_011_0076_0
Farkas, Bálint. Adjoint bi-continuous semigroups and semigroups  on the space of measures. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 309-322. doi : 10.1007/s10587-011-0076-0. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0076-0/

Cité par Sources :