On the number of limit cycles of a generalized Abel equation
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 73-83.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.
DOI : 10.1007/s10587-011-0018-x
Classification : 34C07, 34C25
Keywords: periodic solution; limit cycle; polynomial nonlinearity
@article{10_1007_s10587_011_0018_x,
     author = {Alkoumi, Naeem and Torres, Pedro J.},
     title = {On the number of limit cycles of a generalized {Abel} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {73--83},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.1007/s10587-011-0018-x},
     mrnumber = {2782760},
     zbl = {1224.34097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0018-x/}
}
TY  - JOUR
AU  - Alkoumi, Naeem
AU  - Torres, Pedro J.
TI  - On the number of limit cycles of a generalized Abel equation
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 73
EP  - 83
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0018-x/
DO  - 10.1007/s10587-011-0018-x
LA  - en
ID  - 10_1007_s10587_011_0018_x
ER  - 
%0 Journal Article
%A Alkoumi, Naeem
%A Torres, Pedro J.
%T On the number of limit cycles of a generalized Abel equation
%J Czechoslovak Mathematical Journal
%D 2011
%P 73-83
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0018-x/
%R 10.1007/s10587-011-0018-x
%G en
%F 10_1007_s10587_011_0018_x
Alkoumi, Naeem; Torres, Pedro J. On the number of limit cycles of a generalized Abel equation. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 73-83. doi : 10.1007/s10587-011-0018-x. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0018-x/

Cité par Sources :