On the number of limit cycles of a generalized Abel equation
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 73-83
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.
DOI :
10.1007/s10587-011-0018-x
Classification :
34C07, 34C25
Keywords: periodic solution; limit cycle; polynomial nonlinearity
Keywords: periodic solution; limit cycle; polynomial nonlinearity
@article{10_1007_s10587_011_0018_x,
author = {Alkoumi, Naeem and Torres, Pedro J.},
title = {On the number of limit cycles of a generalized {Abel} equation},
journal = {Czechoslovak Mathematical Journal},
pages = {73--83},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {2011},
doi = {10.1007/s10587-011-0018-x},
mrnumber = {2782760},
zbl = {1224.34097},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0018-x/}
}
TY - JOUR AU - Alkoumi, Naeem AU - Torres, Pedro J. TI - On the number of limit cycles of a generalized Abel equation JO - Czechoslovak Mathematical Journal PY - 2011 SP - 73 EP - 83 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0018-x/ DO - 10.1007/s10587-011-0018-x LA - en ID - 10_1007_s10587_011_0018_x ER -
%0 Journal Article %A Alkoumi, Naeem %A Torres, Pedro J. %T On the number of limit cycles of a generalized Abel equation %J Czechoslovak Mathematical Journal %D 2011 %P 73-83 %V 61 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0018-x/ %R 10.1007/s10587-011-0018-x %G en %F 10_1007_s10587_011_0018_x
Alkoumi, Naeem; Torres, Pedro J. On the number of limit cycles of a generalized Abel equation. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 73-83. doi: 10.1007/s10587-011-0018-x
Cité par Sources :