Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_016_0119_9, author = {Eisner, Jan and Ku\v{c}era, Milan and V\"ath, Martin}, title = {A variational approach to bifurcation points of a reaction-diffusion system with obstacles and {Neumann} boundary conditions}, journal = {Applications of Mathematics}, pages = {1--25}, publisher = {mathdoc}, volume = {61}, number = {1}, year = {2016}, doi = {10.1007/s10492-016-0119-9}, mrnumber = {3455165}, zbl = {06562144}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0119-9/} }
TY - JOUR AU - Eisner, Jan AU - Kučera, Milan AU - Väth, Martin TI - A variational approach to bifurcation points of a reaction-diffusion system with obstacles and Neumann boundary conditions JO - Applications of Mathematics PY - 2016 SP - 1 EP - 25 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0119-9/ DO - 10.1007/s10492-016-0119-9 LA - en ID - 10_1007_s10492_016_0119_9 ER -
%0 Journal Article %A Eisner, Jan %A Kučera, Milan %A Väth, Martin %T A variational approach to bifurcation points of a reaction-diffusion system with obstacles and Neumann boundary conditions %J Applications of Mathematics %D 2016 %P 1-25 %V 61 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0119-9/ %R 10.1007/s10492-016-0119-9 %G en %F 10_1007_s10492_016_0119_9
Eisner, Jan; Kučera, Milan; Väth, Martin. A variational approach to bifurcation points of a reaction-diffusion system with obstacles and Neumann boundary conditions. Applications of Mathematics, Tome 61 (2016) no. 1, pp. 1-25. doi : 10.1007/s10492-016-0119-9. http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0119-9/
Cité par Sources :