Torsional asymmetry in suspension bridge systems
Applications of Mathematics, Tome 60 (2015) no. 6, pp. 677-701.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence on data are proved.
DOI : 10.1007/s10492-015-0117-3
Classification : 35L57, 35Q74
Keywords: suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data
@article{10_1007_s10492_015_0117_3,
     author = {Mal{\'\i}k, Josef},
     title = {Torsional asymmetry in suspension bridge systems},
     journal = {Applications of Mathematics},
     pages = {677--701},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2015},
     doi = {10.1007/s10492-015-0117-3},
     mrnumber = {3436568},
     zbl = {06537668},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0117-3/}
}
TY  - JOUR
AU  - Malík, Josef
TI  - Torsional asymmetry in suspension bridge systems
JO  - Applications of Mathematics
PY  - 2015
SP  - 677
EP  - 701
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0117-3/
DO  - 10.1007/s10492-015-0117-3
LA  - en
ID  - 10_1007_s10492_015_0117_3
ER  - 
%0 Journal Article
%A Malík, Josef
%T Torsional asymmetry in suspension bridge systems
%J Applications of Mathematics
%D 2015
%P 677-701
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0117-3/
%R 10.1007/s10492-015-0117-3
%G en
%F 10_1007_s10492_015_0117_3
Malík, Josef. Torsional asymmetry in suspension bridge systems. Applications of Mathematics, Tome 60 (2015) no. 6, pp. 677-701. doi : 10.1007/s10492-015-0117-3. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0117-3/

Cité par Sources :