A study of Galerkin method for the heat convection equations
Applications of Mathematics, Tome 57 (2012) no. 1, pp. 71-91.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.
DOI : 10.1007/s10492-012-0005-z
Classification : 35K90, 35Q35, 65J10, 65M15, 65M60
Keywords: approximate solution; error estimate; Galerkin method; heat convection equation; orthogonal projection; viscous fluid
@article{10_1007_s10492_012_0005_z,
     author = {Vinogradova, Polina and Zarubin, Anatoli},
     title = {A study of {Galerkin} method for the heat convection equations},
     journal = {Applications of Mathematics},
     pages = {71--91},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2012},
     doi = {10.1007/s10492-012-0005-z},
     mrnumber = {2891306},
     zbl = {1249.65119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0005-z/}
}
TY  - JOUR
AU  - Vinogradova, Polina
AU  - Zarubin, Anatoli
TI  - A study of Galerkin method for the heat convection equations
JO  - Applications of Mathematics
PY  - 2012
SP  - 71
EP  - 91
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0005-z/
DO  - 10.1007/s10492-012-0005-z
LA  - en
ID  - 10_1007_s10492_012_0005_z
ER  - 
%0 Journal Article
%A Vinogradova, Polina
%A Zarubin, Anatoli
%T A study of Galerkin method for the heat convection equations
%J Applications of Mathematics
%D 2012
%P 71-91
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0005-z/
%R 10.1007/s10492-012-0005-z
%G en
%F 10_1007_s10492_012_0005_z
Vinogradova, Polina; Zarubin, Anatoli. A study of Galerkin method for the heat convection equations. Applications of Mathematics, Tome 57 (2012) no. 1, pp. 71-91. doi : 10.1007/s10492-012-0005-z. http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0005-z/

Cité par Sources :