Approximate solution of an inhomogeneous abstract differential equation
Applications of Mathematics, Tome 57 (2012) no. 1, pp. 31-41.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Recently, we have developed the necessary and sufficient conditions under which a rational function $F(hA)$ approximates the semigroup of operators $\exp (tA)$ generated by an infinitesimal operator $A$. The present paper extends these results to an inhomogeneous equation $u'(t)=Au(t)+f(t)$.
DOI : 10.1007/s10492-012-0003-1
Classification : 34A45, 34G10, 34K30, 35K90, 41A20, 47D03
Keywords: abstract differential equations; semigroups of operators; rational approximations; A-stability
@article{10_1007_s10492_012_0003_1,
     author = {Vit\'asek, Emil},
     title = {Approximate solution of an inhomogeneous abstract differential equation},
     journal = {Applications of Mathematics},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2012},
     doi = {10.1007/s10492-012-0003-1},
     mrnumber = {2891304},
     zbl = {1249.34169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0003-1/}
}
TY  - JOUR
AU  - Vitásek, Emil
TI  - Approximate solution of an inhomogeneous abstract differential equation
JO  - Applications of Mathematics
PY  - 2012
SP  - 31
EP  - 41
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0003-1/
DO  - 10.1007/s10492-012-0003-1
LA  - en
ID  - 10_1007_s10492_012_0003_1
ER  - 
%0 Journal Article
%A Vitásek, Emil
%T Approximate solution of an inhomogeneous abstract differential equation
%J Applications of Mathematics
%D 2012
%P 31-41
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0003-1/
%R 10.1007/s10492-012-0003-1
%G en
%F 10_1007_s10492_012_0003_1
Vitásek, Emil. Approximate solution of an inhomogeneous abstract differential equation. Applications of Mathematics, Tome 57 (2012) no. 1, pp. 31-41. doi : 10.1007/s10492-012-0003-1. http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0003-1/

Cité par Sources :