Some results for fractional impulsive boundary value problems on infinite intervals
Applications of Mathematics, Tome 56 (2011) no. 4, pp. 371-387.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.
DOI : 10.1007/s10492-011-0021-4
Classification : 26A33, 34A08, 34A37, 34B37, 34B40
Keywords: fractional derivative; impulsive equations; positive solutions; fixed point theorem; monotone iterative method
@article{10_1007_s10492_011_0021_4,
     author = {Zhao, Xiangkui and Ge, Weigao},
     title = {Some results for fractional impulsive boundary value problems on infinite intervals},
     journal = {Applications of Mathematics},
     pages = {371--387},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2011},
     doi = {10.1007/s10492-011-0021-4},
     mrnumber = {2833167},
     zbl = {1240.26011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0021-4/}
}
TY  - JOUR
AU  - Zhao, Xiangkui
AU  - Ge, Weigao
TI  - Some results for fractional impulsive boundary value problems on infinite intervals
JO  - Applications of Mathematics
PY  - 2011
SP  - 371
EP  - 387
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0021-4/
DO  - 10.1007/s10492-011-0021-4
LA  - en
ID  - 10_1007_s10492_011_0021_4
ER  - 
%0 Journal Article
%A Zhao, Xiangkui
%A Ge, Weigao
%T Some results for fractional impulsive boundary value problems on infinite intervals
%J Applications of Mathematics
%D 2011
%P 371-387
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0021-4/
%R 10.1007/s10492-011-0021-4
%G en
%F 10_1007_s10492_011_0021_4
Zhao, Xiangkui; Ge, Weigao. Some results for fractional impulsive boundary value problems on infinite intervals. Applications of Mathematics, Tome 56 (2011) no. 4, pp. 371-387. doi : 10.1007/s10492-011-0021-4. http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0021-4/

Cité par Sources :