The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions
Applications of Mathematics, Tome 51 (2006) no. 5, pp. 517-547.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present a detailed proof of the density of the set $C^\infty (\overline{\Omega })\cap V$ in the space of test functions $V\subset H^1(\Omega )$ that vanish on some part of the boundary $\partial \Omega $ of a bounded domain $\Omega $.
DOI : 10.1007/s10492-006-0019-5
Classification : 46E35, 46N40
Keywords: density theorems; finite element method
@article{10_1007_s10492_006_0019_5,
     author = {Doktor, Pavel and \v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {The density of infinitely differentiable functions in {Sobolev} spaces with mixed boundary conditions},
     journal = {Applications of Mathematics},
     pages = {517--547},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2006},
     doi = {10.1007/s10492-006-0019-5},
     mrnumber = {2261637},
     zbl = {1164.46322},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0019-5/}
}
TY  - JOUR
AU  - Doktor, Pavel
AU  - Ženíšek, Alexander
TI  - The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions
JO  - Applications of Mathematics
PY  - 2006
SP  - 517
EP  - 547
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0019-5/
DO  - 10.1007/s10492-006-0019-5
LA  - en
ID  - 10_1007_s10492_006_0019_5
ER  - 
%0 Journal Article
%A Doktor, Pavel
%A Ženíšek, Alexander
%T The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions
%J Applications of Mathematics
%D 2006
%P 517-547
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0019-5/
%R 10.1007/s10492-006-0019-5
%G en
%F 10_1007_s10492_006_0019_5
Doktor, Pavel; Ženíšek, Alexander. The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Applications of Mathematics, Tome 51 (2006) no. 5, pp. 517-547. doi : 10.1007/s10492-006-0019-5. http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0019-5/

Cité par Sources :