The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions
Applications of Mathematics, Tome 51 (2006) no. 5, pp. 517-547
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We present a detailed proof of the density of the set $C^\infty (\overline{\Omega })\cap V$ in the space of test functions $V\subset H^1(\Omega )$ that vanish on some part of the boundary $\partial \Omega $ of a bounded domain $\Omega $.
DOI :
10.1007/s10492-006-0019-5
Classification :
46E35, 46N40
Keywords: density theorems; finite element method
Keywords: density theorems; finite element method
@article{10_1007_s10492_006_0019_5,
author = {Doktor, Pavel and \v{Z}en{\'\i}\v{s}ek, Alexander},
title = {The density of infinitely differentiable functions in {Sobolev} spaces with mixed boundary conditions},
journal = {Applications of Mathematics},
pages = {517--547},
publisher = {mathdoc},
volume = {51},
number = {5},
year = {2006},
doi = {10.1007/s10492-006-0019-5},
mrnumber = {2261637},
zbl = {1164.46322},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0019-5/}
}
TY - JOUR AU - Doktor, Pavel AU - Ženíšek, Alexander TI - The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions JO - Applications of Mathematics PY - 2006 SP - 517 EP - 547 VL - 51 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0019-5/ DO - 10.1007/s10492-006-0019-5 LA - en ID - 10_1007_s10492_006_0019_5 ER -
%0 Journal Article %A Doktor, Pavel %A Ženíšek, Alexander %T The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions %J Applications of Mathematics %D 2006 %P 517-547 %V 51 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0019-5/ %R 10.1007/s10492-006-0019-5 %G en %F 10_1007_s10492_006_0019_5
Doktor, Pavel; Ženíšek, Alexander. The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Applications of Mathematics, Tome 51 (2006) no. 5, pp. 517-547. doi: 10.1007/s10492-006-0019-5
Cité par Sources :