Voir la notice de l'article provenant de la source Numdam
In mixed characteristic and in equal characteristic we define a filtration on topological Hochschild homology and its variants. This filtration is an analogue of the filtration of algebraic -theory by motivic cohomology. Its graded pieces are related in mixed characteristic to the complex constructed in our previous work, and in equal characteristic to crystalline cohomology. Our construction of the filtration on is via flat descent to semiperfectoid rings.
As one application, we refine the construction of the -complex by giving a cohomological construction of Breuil–Kisin modules for proper smooth formal schemes over , where is a discretely valued extension of with perfect residue field. As another application, we define syntomic sheaves for all on a large class of -algebras, and identify them in terms of -adic nearby cycles in mixed characteristic, and in terms of logarithmic de Rham-Witt sheaves in equal characteristic .
Bhatt, Bhargav 1 ; Morrow, Matthew  ; Scholze, Peter 
@article{PMIHES_2019__129__199_0, author = {Bhatt, Bhargav and Morrow, Matthew and Scholze, Peter}, title = {Topological {Hochschild} homology and integral $p$-adic {Hodge} theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {199--310}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {129}, year = {2019}, doi = {10.1007/s10240-019-00106-9}, mrnumber = {3949030}, zbl = {1478.14039}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-019-00106-9/} }
TY - JOUR AU - Bhatt, Bhargav AU - Morrow, Matthew AU - Scholze, Peter TI - Topological Hochschild homology and integral $p$-adic Hodge theory JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 199 EP - 310 VL - 129 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-019-00106-9/ DO - 10.1007/s10240-019-00106-9 LA - en ID - PMIHES_2019__129__199_0 ER -
%0 Journal Article %A Bhatt, Bhargav %A Morrow, Matthew %A Scholze, Peter %T Topological Hochschild homology and integral $p$-adic Hodge theory %J Publications Mathématiques de l'IHÉS %D 2019 %P 199-310 %V 129 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-019-00106-9/ %R 10.1007/s10240-019-00106-9 %G en %F PMIHES_2019__129__199_0
Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Topological Hochschild homology and integral $p$-adic Hodge theory. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 199-310. doi: 10.1007/s10240-019-00106-9
Cité par Sources :