Teichmüller curves in genus three and just likely intersections in Gmn×Gan
Publications Mathématiques de l'IHÉS, Tome 124 (2016), pp. 1-98

Voir la notice de l'article provenant de la source Numdam

We prove that the moduli space of compact genus three Riemann surfaces contains only finitely many algebraically primitive Teichmüller curves. For the stratum ΩM3(4), consisting of holomorphic one-forms with a single zero, our approach to finiteness uses the Harder-Narasimhan filtration of the Hodge bundle over a Teichmüller curve to obtain new information on the locations of the zeros of eigenforms. By passing to the boundary of moduli space, this gives explicit constraints on the cusps of Teichmüller curves in terms of cross-ratios of six points on P1.

These constraints are akin to those that appear in Zilber and Pink’s conjectures on unlikely intersections in diophantine geometry. However, in our case one is lead naturally to the intersection of a surface with a family of codimension two algebraic subgroups of Gmn×Gan (rather than the more standard Gmn). The ambient algebraic group lies outside the scope of Zilber’s Conjecture but we are nonetheless able to prove a sufficiently strong height bound.

For the generic stratum ΩM3(1,1,1,1), we obtain global torsion order bounds through a computer search for subtori of a codimension-two subvariety of Gm9. These torsion bounds together with new bounds for the moduli of horizontal cylinders in terms of torsion orders yields finiteness in this stratum. The intermediate strata are handled with a mix of these techniques.

DOI : 10.1007/s10240-016-0084-6

Bainbridge, Matt 1 ; Habegger, Philipp 2 ; Möller, Martin 3

1 Department of Mathematics, Indiana University Bloomington 47405 Bloomington IN USA
2 Department of Mathematics and Computer Science, University of Basel 4051 Basel Switzerland
3 Institut für Mathematik, Goethe-Universität Frankfurt 60325 Frankfurt am Main Germany
@article{PMIHES_2016__124__1_0,
     author = {Bainbridge, Matt and Habegger, Philipp and M\"oller, Martin},
     title = {Teichm\"uller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--98},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {124},
     year = {2016},
     doi = {10.1007/s10240-016-0084-6},
     mrnumber = {3578914},
     zbl = {1357.14038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0084-6/}
}
TY  - JOUR
AU  - Bainbridge, Matt
AU  - Habegger, Philipp
AU  - Möller, Martin
TI  - Teichmüller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 1
EP  - 98
VL  - 124
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0084-6/
DO  - 10.1007/s10240-016-0084-6
LA  - en
ID  - PMIHES_2016__124__1_0
ER  - 
%0 Journal Article
%A Bainbridge, Matt
%A Habegger, Philipp
%A Möller, Martin
%T Teichmüller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 1-98
%V 124
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0084-6/
%R 10.1007/s10240-016-0084-6
%G en
%F PMIHES_2016__124__1_0
Bainbridge, Matt; Habegger, Philipp; Möller, Martin. Teichmüller curves in genus three and just likely intersections in $\mathbf{G}_{m}^{n}\times\mathbf{G}_{a}^{n}$. Publications Mathématiques de l'IHÉS, Tome 124 (2016), pp. 1-98. doi: 10.1007/s10240-016-0084-6

Cité par Sources :