Simply-laced isomonodromy systems
Publications Mathématiques de l'IHÉS, Tome 116 (2012), pp. 1-68

Voir la notice de l'article provenant de la source Numdam

A new class of isomonodromy equations will be introduced and shown to admit Kac–Moody Weyl group symmetries. This puts into a general context some results of Okamoto on the 4th, 5th and 6th Painlevé equations, and shows where such Kac–Moody Weyl groups and root systems occur “in nature”. A key point is that one may go beyond the class of affine Kac–Moody root systems. As examples, by considering certain hyperbolic Kac–Moody Dynkin diagrams, we find there is a sequence of higher order Painlevé systems lying over each of the classical Painlevé equations. This leads to a conjecture about the Hilbert scheme of points on some Hitchin systems.

DOI : 10.1007/s10240-012-0044-8

Boalch, Philip 1

1 École Normale Supérieure et CNRS 45 rue d’Ulm, 75005, Paris France
@article{PMIHES_2012__116__1_0,
     author = {Boalch, Philip},
     title = {Simply-laced isomonodromy systems},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--68},
     publisher = {Springer-Verlag},
     volume = {116},
     year = {2012},
     doi = {10.1007/s10240-012-0044-8},
     mrnumber = {3090254},
     zbl = {1270.34204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0044-8/}
}
TY  - JOUR
AU  - Boalch, Philip
TI  - Simply-laced isomonodromy systems
JO  - Publications Mathématiques de l'IHÉS
PY  - 2012
SP  - 1
EP  - 68
VL  - 116
PB  - Springer-Verlag
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0044-8/
DO  - 10.1007/s10240-012-0044-8
LA  - en
ID  - PMIHES_2012__116__1_0
ER  - 
%0 Journal Article
%A Boalch, Philip
%T Simply-laced isomonodromy systems
%J Publications Mathématiques de l'IHÉS
%D 2012
%P 1-68
%V 116
%I Springer-Verlag
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0044-8/
%R 10.1007/s10240-012-0044-8
%G en
%F PMIHES_2012__116__1_0
Boalch, Philip. Simply-laced isomonodromy systems. Publications Mathématiques de l'IHÉS, Tome 116 (2012), pp. 1-68. doi: 10.1007/s10240-012-0044-8

Cité par Sources :