Voir la notice de l'article provenant de la source Numdam
A new class of isomonodromy equations will be introduced and shown to admit Kac–Moody Weyl group symmetries. This puts into a general context some results of Okamoto on the 4th, 5th and 6th Painlevé equations, and shows where such Kac–Moody Weyl groups and root systems occur “in nature”. A key point is that one may go beyond the class of affine Kac–Moody root systems. As examples, by considering certain hyperbolic Kac–Moody Dynkin diagrams, we find there is a sequence of higher order Painlevé systems lying over each of the classical Painlevé equations. This leads to a conjecture about the Hilbert scheme of points on some Hitchin systems.
@article{PMIHES_2012__116__1_0, author = {Boalch, Philip}, title = {Simply-laced isomonodromy systems}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--68}, publisher = {Springer-Verlag}, volume = {116}, year = {2012}, doi = {10.1007/s10240-012-0044-8}, mrnumber = {3090254}, zbl = {1270.34204}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0044-8/} }
TY - JOUR AU - Boalch, Philip TI - Simply-laced isomonodromy systems JO - Publications Mathématiques de l'IHÉS PY - 2012 SP - 1 EP - 68 VL - 116 PB - Springer-Verlag UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0044-8/ DO - 10.1007/s10240-012-0044-8 LA - en ID - PMIHES_2012__116__1_0 ER -
Boalch, Philip. Simply-laced isomonodromy systems. Publications Mathématiques de l'IHÉS, Tome 116 (2012), pp. 1-68. doi: 10.1007/s10240-012-0044-8
Cité par Sources :