Voir la notice de l'article provenant de la source Numdam
We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the S 2 target in all homotopy classes and for the critical equivariant SO(4) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.
Raphaël, Pierre 1 ; Rodnianski, Igor 2
@article{PMIHES_2012__115__1_0, author = {Rapha\"el, Pierre and Rodnianski, Igor}, title = {Stable blow up dynamics for the critical co-rotational wave maps and equivariant {Yang-Mills} problems}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--122}, publisher = {Springer-Verlag}, volume = {115}, year = {2012}, doi = {10.1007/s10240-011-0037-z}, zbl = {1284.35358}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-011-0037-z/} }
TY - JOUR AU - Raphaël, Pierre AU - Rodnianski, Igor TI - Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems JO - Publications Mathématiques de l'IHÉS PY - 2012 SP - 1 EP - 122 VL - 115 PB - Springer-Verlag UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-011-0037-z/ DO - 10.1007/s10240-011-0037-z LA - en ID - PMIHES_2012__115__1_0 ER -
%0 Journal Article %A Raphaël, Pierre %A Rodnianski, Igor %T Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems %J Publications Mathématiques de l'IHÉS %D 2012 %P 1-122 %V 115 %I Springer-Verlag %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-011-0037-z/ %R 10.1007/s10240-011-0037-z %G en %F PMIHES_2012__115__1_0
Raphaël, Pierre; Rodnianski, Igor. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publications Mathématiques de l'IHÉS, Tome 115 (2012), pp. 1-122. doi: 10.1007/s10240-011-0037-z
Cité par Sources :