In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C ∞, parametrized families {g t ∣t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative speed as the parameter evolves, starting at t=0 and the point q. We also assume that, in some neighborhood W of K and of the orbit of tangency o(q), the maximal invariant set for g 0=g t=0 is K∪o(q), where o(q) denotes the orbit of q for g 0. We then prove that, when the Hausdorff dimension HD(K) is bigger than one, but not much bigger (see (H.4) in Section 1.2 for a precise statement), then for most t, |t| small, g t is a non-uniformly hyperbolic horseshoe in W, and so g t has no attractors in W. Most t, and thus most g t , here means that t is taken in a set of parameter values with Lebesgue density one at t=0.
@article{PMIHES_2009__110__1_0,
author = {Palis, Jacob and Yoccoz, Jean-Christophe},
title = {Non-uniformly hyperbolic horseshoes arising from bifurcations of {Poincar\'e} heteroclinic cycles},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--217},
year = {2009},
publisher = {Springer-Verlag},
volume = {110},
doi = {10.1007/s10240-009-0023-x},
mrnumber = {2551484},
zbl = {1181.37024},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0023-x/}
}
TY - JOUR AU - Palis, Jacob AU - Yoccoz, Jean-Christophe TI - Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles JO - Publications Mathématiques de l'IHÉS PY - 2009 SP - 1 EP - 217 VL - 110 PB - Springer-Verlag UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0023-x/ DO - 10.1007/s10240-009-0023-x LA - en ID - PMIHES_2009__110__1_0 ER -
%0 Journal Article %A Palis, Jacob %A Yoccoz, Jean-Christophe %T Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles %J Publications Mathématiques de l'IHÉS %D 2009 %P 1-217 %V 110 %I Springer-Verlag %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0023-x/ %R 10.1007/s10240-009-0023-x %G en %F PMIHES_2009__110__1_0
Palis, Jacob; Yoccoz, Jean-Christophe. Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles. Publications Mathématiques de l'IHÉS, Tome 110 (2009), pp. 1-217. doi: 10.1007/s10240-009-0023-x
Cité par Sources :
