Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles
Publications Mathématiques de l'IHÉS, Tome 110 (2009), pp. 1-217.

Voir la notice de l'article provenant de la source Numdam

In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C ∞, parametrized families {g t ∣t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative speed as the parameter evolves, starting at t=0 and the point q. We also assume that, in some neighborhood W of K and of the orbit of tangency o(q), the maximal invariant set for g 0=g t=0 is K∪o(q), where o(q) denotes the orbit of q for g 0. We then prove that, when the Hausdorff dimension HD(K) is bigger than one, but not much bigger (see (H.4) in Section 1.2 for a precise statement), then for most t, |t| small, g t is a non-uniformly hyperbolic horseshoe in W, and so g t has no attractors in W. Most t, and thus most g t , here means that t is taken in a set of parameter values with Lebesgue density one at t=0.

@article{PMIHES_2009__110__1_0,
     author = {Palis, Jacob and Yoccoz, Jean-Christophe},
     title = {Non-uniformly hyperbolic horseshoes arising from bifurcations of {Poincar\'e} heteroclinic cycles},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--217},
     publisher = {Springer-Verlag},
     volume = {110},
     year = {2009},
     doi = {10.1007/s10240-009-0023-x},
     mrnumber = {2551484},
     zbl = {1181.37024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0023-x/}
}
TY  - JOUR
AU  - Palis, Jacob
AU  - Yoccoz, Jean-Christophe
TI  - Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles
JO  - Publications Mathématiques de l'IHÉS
PY  - 2009
SP  - 1
EP  - 217
VL  - 110
PB  - Springer-Verlag
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0023-x/
DO  - 10.1007/s10240-009-0023-x
LA  - en
ID  - PMIHES_2009__110__1_0
ER  - 
%0 Journal Article
%A Palis, Jacob
%A Yoccoz, Jean-Christophe
%T Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles
%J Publications Mathématiques de l'IHÉS
%D 2009
%P 1-217
%V 110
%I Springer-Verlag
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0023-x/
%R 10.1007/s10240-009-0023-x
%G en
%F PMIHES_2009__110__1_0
Palis, Jacob; Yoccoz, Jean-Christophe. Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles. Publications Mathématiques de l'IHÉS, Tome 110 (2009), pp. 1-217. doi : 10.1007/s10240-009-0023-x. http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0023-x/

[BC] M. Benedicks, L. Carleson, The dynamics of the Hénon map, Ann. Math. 133 (1991), p. 73-169 | Zbl | MR

[BDV] C. Bonatti, L. Diaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopedia of Math. Sciences 102 (2004), Springer, Berlin | Zbl | MR

[BR] R. Bowen, D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), p. 181-202 | Zbl | MR

[C] E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. Henri Poincaré Anal. Non Linéaire 15 (1998), p. 539-579 | Zbl | MR | mathdoc-id

[CL] M. L. Cartwright, J. E. Littlewood, On nonlinear differential equations of the second order I, J. Lond. Math. Soc. 29 (1945), p. 180-189 | Zbl | MR

[L] M. Levi, Qualitative analysis of the periodically forced relaxation oscillations, Mem. Am. Math. Soc. 32 (1981), p. 244 | Zbl | MR

[MV] L. Mora, M. Viana, Abundance of strange attractors, Acta Math. 171 (1993), p. 1-71 | Zbl | MR

[MPV] C. G. Moreira, J. Palis, M. Viana, Homoclinic tangencies and fractal invariants in arbitrary dimension, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), p. 475-480 | Zbl | MR

[MY] C. G. Moreira, J.-C. Yoccoz, Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. Math. 154 (2001), p. 45-96 | Zbl | MR

[N] S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. I.H.E.S. 50 (1979), p. 101-151 | Zbl | MR | mathdoc-id

[NP] S. Newhouse, J. Palis, Cycles and bifurcation theory, Astérisque 31 (1976), p. 44-140 | Zbl | MR | mathdoc-id

[P1] J. Palis, A global view of Dynamics and a conjecture on the denseness of finitude of attractors, Astérisque 261 (2000), p. 335-347 | Zbl | MR | mathdoc-id

[P2] J. Palis, A global perspective for non-conservative dynamics, Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005), p. 485-507 | Zbl | MR | mathdoc-id

[P3] J. Palis, Open questions leading to a global perspective in dynamics, Nonlinearity 21 (2008), p. 37-43 | Zbl | MR

[PT] J. Palis, F. Takens, Hyperbolic and the creation of homoclinic orbits, Ann. Math. 125 (1987), p. 337-374 | Zbl | MR

[PY1] J. Palis, J.-C. Yoccoz, Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta Math. 172 (1994), p. 91-136 | Zbl | MR

[PY2] J. Palis, J.-C. Yoccoz, Implicit Formalism for Affine-like Map and Parabolic Composition, Global Analysis of Dynamical Systems (2001), Institut of Phys., IOP, London | Zbl | MR

[PY3] J. Palis, J.-C. Yoccoz, Fers à cheval non uniformément hyperboliques engendrés par une bifurcation homocline et densité nulle des attracteurs, C. R. Acad. Sci. Paris 333 (2001), p. 867-871 | Zbl | MR

[Po] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, III (1899), Gauthier-Villars, Paris | JFM

[Ru] D. Ruelle, A measure associated with Axiom A attractors, Am. J. Math. 98 (1976), p. 619-654 | Zbl | MR

[S] S. Smale, Differentiable dynamical systems, Bull. Am. Math. Soc. 73 (1967), p. 747-817 | Zbl | MR

[Si] Ya. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surv. 27 (1972), p. 21-69 | Zbl | MR

Cité par Sources :