Voir la notice de l'article provenant de la source Numdam
Let G be a split semisimple algebraic group over with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to , construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil-Petersson form for one of these spaces. It is related to the motivic dilogarithm.
@article{PMIHES_2006__103__1_0, author = {Fock, Vladimir and Goncharov, Alexander}, title = {Moduli spaces of local systems and higher {Teichm\"uller} theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--211}, publisher = {Springer}, volume = {103}, year = {2006}, doi = {10.1007/s10240-006-0039-4}, mrnumber = {2233852}, zbl = {1099.14025}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0039-4/} }
TY - JOUR AU - Fock, Vladimir AU - Goncharov, Alexander TI - Moduli spaces of local systems and higher Teichmüller theory JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 1 EP - 211 VL - 103 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0039-4/ DO - 10.1007/s10240-006-0039-4 LA - en ID - PMIHES_2006__103__1_0 ER -
%0 Journal Article %A Fock, Vladimir %A Goncharov, Alexander %T Moduli spaces of local systems and higher Teichmüller theory %J Publications Mathématiques de l'IHÉS %D 2006 %P 1-211 %V 103 %I Springer %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0039-4/ %R 10.1007/s10240-006-0039-4 %G en %F PMIHES_2006__103__1_0
Fock, Vladimir; Goncharov, Alexander. Moduli spaces of local systems and higher Teichmüller theory. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 1-211. doi: 10.1007/s10240-006-0039-4
Cité par Sources :