Voir la notice de l'article provenant de la source Numdam
Let X be a germ of holomorphic vector field at the origin of and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”. Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of positive measure.
@article{PMIHES_2005__102__99_0, author = {Stolovitch, Laurent}, title = {A {KAM} phenomenon for singular holomorphic vector fields}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {99--165}, publisher = {Springer}, volume = {102}, year = {2005}, doi = {10.1007/s10240-005-0035-0}, mrnumber = {2217052}, zbl = {1114.37026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0035-0/} }
TY - JOUR AU - Stolovitch, Laurent TI - A KAM phenomenon for singular holomorphic vector fields JO - Publications Mathématiques de l'IHÉS PY - 2005 SP - 99 EP - 165 VL - 102 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0035-0/ DO - 10.1007/s10240-005-0035-0 LA - en ID - PMIHES_2005__102__99_0 ER -
%0 Journal Article %A Stolovitch, Laurent %T A KAM phenomenon for singular holomorphic vector fields %J Publications Mathématiques de l'IHÉS %D 2005 %P 99-165 %V 102 %I Springer %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0035-0/ %R 10.1007/s10240-005-0035-0 %G en %F PMIHES_2005__102__99_0
Stolovitch, Laurent. A KAM phenomenon for singular holomorphic vector fields. Publications Mathématiques de l'IHÉS, Tome 102 (2005), pp. 99-165. doi: 10.1007/s10240-005-0035-0
Cité par Sources :