Smooth quasiregular maps with branching in 𝐑 n
Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 209-241

Voir la notice de l'article provenant de la source Numdam

According to a theorem of Martio, Rickman and Väisälä, all nonconstant C n/(n-2) -smooth quasiregular maps in 𝐑 n , n3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in 𝐑 3 . We prove that the order of smoothness is sharp in 𝐑 4 . For each n5 we construct a C 1+ϵ(n) -smooth quasiregular map in 𝐑 n with nonempty branch set.

@article{PMIHES_2005__101__209_0,
     author = {Kaufman, Robert and Tyson, Jeremy T. and Wu, Jang-Mei},
     title = {Smooth quasiregular maps with branching in $\mathbf {R}^n$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {209--241},
     publisher = {Springer},
     volume = {101},
     year = {2005},
     doi = {10.1007/s10240-005-0031-4},
     zbl = {1078.30015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/}
}
TY  - JOUR
AU  - Kaufman, Robert
AU  - Tyson, Jeremy T.
AU  - Wu, Jang-Mei
TI  - Smooth quasiregular maps with branching in $\mathbf {R}^n$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2005
SP  - 209
EP  - 241
VL  - 101
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/
DO  - 10.1007/s10240-005-0031-4
LA  - en
ID  - PMIHES_2005__101__209_0
ER  - 
%0 Journal Article
%A Kaufman, Robert
%A Tyson, Jeremy T.
%A Wu, Jang-Mei
%T Smooth quasiregular maps with branching in $\mathbf {R}^n$
%J Publications Mathématiques de l'IHÉS
%D 2005
%P 209-241
%V 101
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/
%R 10.1007/s10240-005-0031-4
%G en
%F PMIHES_2005__101__209_0
Kaufman, Robert; Tyson, Jeremy T.; Wu, Jang-Mei. Smooth quasiregular maps with branching in $\mathbf {R}^n$. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 209-241. doi: 10.1007/s10240-005-0031-4

Cité par Sources :