Voir la notice de l'article provenant de la source Numdam
According to a theorem of Martio, Rickman and Väisälä, all nonconstant -smooth quasiregular maps in , , are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in . We prove that the order of smoothness is sharp in . For each we construct a -smooth quasiregular map in with nonempty branch set.
@article{PMIHES_2005__101__209_0, author = {Kaufman, Robert and Tyson, Jeremy T. and Wu, Jang-Mei}, title = {Smooth quasiregular maps with branching in $\mathbf {R}^n$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {209--241}, publisher = {Springer}, volume = {101}, year = {2005}, doi = {10.1007/s10240-005-0031-4}, zbl = {1078.30015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/} }
TY - JOUR AU - Kaufman, Robert AU - Tyson, Jeremy T. AU - Wu, Jang-Mei TI - Smooth quasiregular maps with branching in $\mathbf {R}^n$ JO - Publications Mathématiques de l'IHÉS PY - 2005 SP - 209 EP - 241 VL - 101 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/ DO - 10.1007/s10240-005-0031-4 LA - en ID - PMIHES_2005__101__209_0 ER -
%0 Journal Article %A Kaufman, Robert %A Tyson, Jeremy T. %A Wu, Jang-Mei %T Smooth quasiregular maps with branching in $\mathbf {R}^n$ %J Publications Mathématiques de l'IHÉS %D 2005 %P 209-241 %V 101 %I Springer %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/ %R 10.1007/s10240-005-0031-4 %G en %F PMIHES_2005__101__209_0
Kaufman, Robert; Tyson, Jeremy T.; Wu, Jang-Mei. Smooth quasiregular maps with branching in $\mathbf {R}^n$. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 209-241. doi: 10.1007/s10240-005-0031-4
Cité par Sources :