Smooth quasiregular maps with branching in
Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 209-241
Cet article a éte moissonné depuis la source Numdam
According to a theorem of Martio, Rickman and Väisälä, all nonconstant -smooth quasiregular maps in , , are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in . We prove that the order of smoothness is sharp in . For each we construct a -smooth quasiregular map in with nonempty branch set.
@article{PMIHES_2005__101__209_0,
author = {Kaufman, Robert and Tyson, Jeremy T. and Wu, Jang-Mei},
title = {Smooth quasiregular maps with branching in $\mathbf {R}^n$},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {209--241},
year = {2005},
publisher = {Springer},
volume = {101},
doi = {10.1007/s10240-005-0031-4},
zbl = {1078.30015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/}
}
TY - JOUR
AU - Kaufman, Robert
AU - Tyson, Jeremy T.
AU - Wu, Jang-Mei
TI - Smooth quasiregular maps with branching in $\mathbf {R}^n$
JO - Publications Mathématiques de l'IHÉS
PY - 2005
SP - 209
EP - 241
VL - 101
PB - Springer
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/
DO - 10.1007/s10240-005-0031-4
LA - en
ID - PMIHES_2005__101__209_0
ER -
%0 Journal Article
%A Kaufman, Robert
%A Tyson, Jeremy T.
%A Wu, Jang-Mei
%T Smooth quasiregular maps with branching in $\mathbf {R}^n$
%J Publications Mathématiques de l'IHÉS
%D 2005
%P 209-241
%V 101
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-005-0031-4/
%R 10.1007/s10240-005-0031-4
%G en
%F PMIHES_2005__101__209_0
Kaufman, Robert; Tyson, Jeremy T.; Wu, Jang-Mei. Smooth quasiregular maps with branching in $\mathbf {R}^n$. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 209-241. doi: 10.1007/s10240-005-0031-4
Cité par Sources :