Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants
Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 61-179.

Voir la notice de l'article provenant de la source Numdam

A holomorphic 1-form on a compact Riemann surface S naturally defines a flat metric on S with cone-type singularities. We present the following surprising phenomenon: having found a geodesic segment (saddle connection) joining a pair of conical points one can find with a nonzero probability another saddle connection on S having the same direction and the same length as the initial one. A similar phenomenon is valid for the families of parallel closed geodesics. We give a complete description of all possible configurations of parallel saddle connections (and of families of parallel closed geodesics) which might be found on a generic flat surface S. We count the number of saddle connections of length less than L on a generic flat surface S; we also count the number of admissible configurations of pairs (triples,...) of saddle connections; we count the analogous numbers of configurations of families of closed geodesics. By the previous result of [EMa] these numbers have quadratic asymptotics c·(πL 2 ). Here we explicitly compute the constant c for a configuration of every type. The constant c is found from a Siegel-Veech formula. To perform this computation we elaborate the detailed description of the principal part of the boundary of the moduli space of holomorphic 1-forms and we find the numerical value of the normalized volume of the tubular neighborhood of the boundary. We use this for evaluation of integrals over the moduli space.

@article{PMIHES_2003__97__61_0,
     author = {Eskin, Alex and Masur, Howard and Zorich, Anton},
     title = {Moduli spaces of abelian differentials : the principal boundary, counting problems, and the {Siegel-Veech} constants},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {61--179},
     publisher = {Springer},
     volume = {97},
     year = {2003},
     doi = {10.1007/s10240-003-0015-1},
     zbl = {1037.32013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0015-1/}
}
TY  - JOUR
AU  - Eskin, Alex
AU  - Masur, Howard
AU  - Zorich, Anton
TI  - Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants
JO  - Publications Mathématiques de l'IHÉS
PY  - 2003
SP  - 61
EP  - 179
VL  - 97
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0015-1/
DO  - 10.1007/s10240-003-0015-1
LA  - en
ID  - PMIHES_2003__97__61_0
ER  - 
%0 Journal Article
%A Eskin, Alex
%A Masur, Howard
%A Zorich, Anton
%T Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants
%J Publications Mathématiques de l'IHÉS
%D 2003
%P 61-179
%V 97
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0015-1/
%R 10.1007/s10240-003-0015-1
%G en
%F PMIHES_2003__97__61_0
Eskin, Alex; Masur, Howard; Zorich, Anton. Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants. Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 61-179. doi : 10.1007/s10240-003-0015-1. http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0015-1/

1. M. Atiyah, Riemann surfaces and spin structures, Ann. Scient. ÉNS 4e Série, 4 (1971), 47-62. | Zbl | MR | mathdoc-id

2. E. Calabi, An intrinsic characterization of harmonic 1-forms, Global Analysis, Papers in Honor of K. Kodaira, D. C. Spencer and S. Iyanaga (ed.), pp. 101-117, 1969. | Zbl | MR

3. A. Eskin, H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory and Dynamical Systems, 21 (2) (2001), 443-478. | Zbl | MR

4. A. Eskin, A. Zorich, Billiards in rectangular polygons, to appear.

5. A. Eskin, A. Okounkov, Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., 145 (1) (2001), 59-104. | Zbl | MR

6. E. Gutkin, Billiards in polygons, Physica D, 19 (1986), 311-333. | Zbl | MR

7. E. Gutkin, C. Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., 103 (2) (2000), 191-213. | Zbl | MR

8. J. Hubbard, H. Masur, Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274. | Zbl | MR

9. P. Hubert, T. A. Schmidt, Invariants of translation surfaces, Ann. Inst. Fourier (Grenoble), 51 (2) (2001), 461-495. | Zbl | MR | mathdoc-id

10. D. Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. (2), 22 (1980), 365-373. | Zbl | MR

11. A. Katok, A. Zemlyakov, Topological transitivity of billiards in polygons, Math. Notes, 18 (1975), 760-764. | Zbl | MR

12. S. Kerckhoff, H. Masur, J. Smillie, Ergodicity of Billiard Flows and Quadratic Differentials, Ann. Math., 124 (1986), 293-311. | Zbl | MR

13. M. Kontsevich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996), (in Honor of C. Itzykson) pp. 318-332, Adv. Ser. Math. Phys., 24, World Sci. Publishing, River Edge, NJ, 1997. | Zbl | MR

14. M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (3) (2003), 631-678. | Zbl | MR

15. H. Masur, Interval exchange transformations and measured foliations, Ann Math., 115 (1982), 169-200. | Zbl | MR

16. H. Masur, J. Smillie, Hausdorff dimension of sets of nonergodic foliations, Ann. Math., 134 (1991), 455-543. | Zbl | MR

17. H. Masur, S. Tabachnikov, Flat structures and rational billiards, Handbook on Dynamical systems, Vol. 1A, 1015-1089, North-Holland, Amsterdam 2002. | Zbl | MR

18. K. Strebel, Quadratic differentials, Springer 1984. | Zbl | MR

19. W. Veech, Teichmuller geodesic flow, Ann. Math. 124 (1986), 441-530. | Zbl | MR

20. W. Veech, Moduli spaces of quadratic differentials, J. D'Analyse Math., 55 (1990), 117-171. | Zbl

21. W. Veech, Teichmuller curves in moduli space. Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1990), 117-171. | MR

22. W. Veech, Siegel measures, Ann. Math., 148 (1998), 895-944. | Zbl | MR

23. A. Zorich, Square tiled surfaces and Teichmüller volumes of the moduli spaces of Abelian differentials, in collection Rigidity in Dynamics and Geometry, M. Burger, A. Iozzi (eds.), pp. 459-471, Springer 2002. | Zbl | MR

Cité par Sources :