Rigidity of critical circle mappings I
Journal of the European Mathematical Society, Tome 1 (1999) no. 4, pp. 339-392.

Voir la notice de l'article provenant de la source EMS Press

Abstract. We prove that two C3 critical circle maps with the same rotation number in a special set ± are C1+! conjugate for some !>0 provided their successive renormalizations converge together at an exponential rate in the C0 sense. The set ± has full Lebesgue measure and contains all rotation numbers of bounded type. By contrast, we also give examples of CX critical circle maps with the same rotation number that are not C1+# conjugate for any #>0. The class of rotation numbers for which such examples exist contains Diophantine numbers.
DOI : 10.1007/s100970050011
Classification : 58-XX, 00-XX
Keywords:
@article{JEMS_1999_1_4_a0,
     author = {Edson de Faria and Welington de Melo},
     title = {Rigidity of critical circle mappings {I}},
     journal = {Journal of the European Mathematical Society},
     pages = {339--392},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1999},
     doi = {10.1007/s100970050011},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050011/}
}
TY  - JOUR
AU  - Edson de Faria
AU  - Welington de Melo
TI  - Rigidity of critical circle mappings I
JO  - Journal of the European Mathematical Society
PY  - 1999
SP  - 339
EP  - 392
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970050011/
DO  - 10.1007/s100970050011
ID  - JEMS_1999_1_4_a0
ER  - 
%0 Journal Article
%A Edson de Faria
%A Welington de Melo
%T Rigidity of critical circle mappings I
%J Journal of the European Mathematical Society
%D 1999
%P 339-392
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970050011/
%R 10.1007/s100970050011
%F JEMS_1999_1_4_a0
Edson de Faria; Welington de Melo. Rigidity of critical circle mappings I. Journal of the European Mathematical Society, Tome 1 (1999) no. 4, pp. 339-392. doi : 10.1007/s100970050011. http://geodesic.mathdoc.fr/articles/10.1007/s100970050011/

Cité par Sources :