Rigidity of critical circle mappings I
Journal of the European Mathematical Society, Tome 1 (1999) no. 4, pp. 339-392
Voir la notice de l'article provenant de la source EMS Press
Abstract. We prove that two C3 critical circle maps with the same rotation number in a special set ± are C1+! conjugate for some !>0 provided their successive renormalizations converge together at an exponential rate in the C0 sense. The set ± has full Lebesgue measure and contains all rotation numbers of bounded type. By contrast, we also give examples of CX critical circle maps with the same rotation number that are not C1+# conjugate for any #>0. The class of rotation numbers for which such examples exist contains Diophantine numbers.
@article{JEMS_1999_1_4_a0,
author = {Edson de Faria and Welington de Melo},
title = {Rigidity of critical circle mappings {I}},
journal = {Journal of the European Mathematical Society},
pages = {339--392},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1999},
doi = {10.1007/s100970050011},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050011/}
}
TY - JOUR AU - Edson de Faria AU - Welington de Melo TI - Rigidity of critical circle mappings I JO - Journal of the European Mathematical Society PY - 1999 SP - 339 EP - 392 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970050011/ DO - 10.1007/s100970050011 ID - JEMS_1999_1_4_a0 ER -
Edson de Faria; Welington de Melo. Rigidity of critical circle mappings I. Journal of the European Mathematical Society, Tome 1 (1999) no. 4, pp. 339-392. doi: 10.1007/s100970050011
Cité par Sources :