Bounded cohomology of lattices in higher rank Lie groups
Journal of the European Mathematical Society, Tome 1 (1999) no. 2, pp. 199-235.

Voir la notice de l'article provenant de la source EMS Press

We prove that the natural map Hb2​(Γ)→H2(Γ) from bounded to usual cohomology is injective if Γ is an irreducible cocompact lattice in a higher rank Lie group. This result holds also for nontrivial unitary coefficients, and implies finiteness results for Γ: the stable commutator length vanishes and any C1-action on the circle is almost trivial. We introduce the continuous bounded cohomology of a locally compact group and prove our statements by relating Hb∙​(Γ) to the continuous bounded cohomology of the ambient group with coefficients in some induction module.
DOI : 10.1007/s100970050007
Classification : 22-XX, 00-XX
Keywords:
@article{JEMS_1999_1_2_a1,
     author = {Marc Burger and Nicolas Monod},
     title = {Bounded cohomology of lattices in higher rank {Lie} groups},
     journal = {Journal of the European Mathematical Society},
     pages = {199--235},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1999},
     doi = {10.1007/s100970050007},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050007/}
}
TY  - JOUR
AU  - Marc Burger
AU  - Nicolas Monod
TI  - Bounded cohomology of lattices in higher rank Lie groups
JO  - Journal of the European Mathematical Society
PY  - 1999
SP  - 199
EP  - 235
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970050007/
DO  - 10.1007/s100970050007
ID  - JEMS_1999_1_2_a1
ER  - 
%0 Journal Article
%A Marc Burger
%A Nicolas Monod
%T Bounded cohomology of lattices in higher rank Lie groups
%J Journal of the European Mathematical Society
%D 1999
%P 199-235
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970050007/
%R 10.1007/s100970050007
%F JEMS_1999_1_2_a1
Marc Burger; Nicolas Monod. Bounded cohomology of lattices in higher rank Lie groups. Journal of the European Mathematical Society, Tome 1 (1999) no. 2, pp. 199-235. doi : 10.1007/s100970050007. http://geodesic.mathdoc.fr/articles/10.1007/s100970050007/

Cité par Sources :