Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Geodesic
Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Zapiski Nauchnykh Seminarov POMI
Tome 393 (2011)
Précédent
Suivant
Mathematical problems in the theory of wave propagation. Part 41
Inverse source problem for the 1-D Schr\"odinger equation
S. A. Avdonin
;
V. S. Mikhaylov
p. 5-11
Diffraction by a narrow circular cone as by a strongly elongated body
I. V. Andronov
;
D. Bouche
p. 12-22
Asymptotic solution of Hamilton--Jacobi equation concentrated near surface
V. M. Babich
;
A. I. Popov
p. 23-28
Determination of distances to virtual source from dynamical boundary data
M. I. Belishev
p. 29-45
Asymptotics of frequency of a~surface wave trapped by a~slightly inclined barrier in a~liquid layer
J. H. Videman
;
V. Chiado' Piat
;
S. A. Nazarov
p. 46-79
Nonunique continuation for the Maxwell system
M. N. Demchenko
p. 80-100
Wave field from a~point source on an open boundary of half plane Biot
G. L. Zavorokhin
p. 101-110
Euler integral symmetry and deformed hypergeometric equation
A. Ya. Kazakov
p. 111-124
Rayleigh waves in an anisotropic elastic medium and impedance
A. P. Kachalov
p. 125-143
Green's function of SH-polarized surface waves
N. Ya. Kirpichnikova
p. 144-151
Reflection and refraction from a~vertical layer of surface SH-waves radiated from a~point source on a~free from tensions boundary
N. Ya. Kirpichnikova
;
A. S. Kirpichnikova
p. 152-166
Exact solutions of the
$m$
-dimensional wave equation from paraxial ones. Further generalization of the Bateman solution
A. P. Kiselev
;
A. B. Plachenov
p. 167-177
Normal waves in porous layer with opened pores on one boundary and with closed pores on other boundary
L. A. Molotkov
p. 178-190
Propagation of normal waves in porous rod with closed pores on boundaries
L. A. Molotkov
p. 191-210
Propagation of normal waves in porous rod with opened pores on boundaries
L. A. Molotkov
p. 211-223
Tilted nonparaxial beams and packets for the wave equation with two spatial variables
A. B. Plachenov
p. 224-233
Asymptotics of waves diffracted by a~cone and diffraction series on a~sphere
A. V. Shanin
p. 234-258