Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Geodesic
Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Studia Mathematica
Tome 167 (2005)
Précédent
Suivant
Sommaire du
Fascicule no. 1
Locally Lipschitz continuous integrated semigroups
Naoki Tanaka
p. 1-16
On the weak decomposition property
$(\delta _w)$
El Hassan Zerouali
;
Hassane Zguitti
p. 17-28
Boundedness of higher order commutators of oscillatory singular integrals with rough kernels
Huoxiong Wu
p. 29-43
Sequential closedness of Boolean algebras of projections in Banach spaces
D. H. Fremlin
;
B. de Pagter
;
W. J. Ricker
p. 45-62
Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations
Dachun Yang
p. 63-98
Sommaire du
Fascicule no. 2
Pseudodifferential operators on non-quasianalytic classes of Beurling type
C. Fernández
;
A. Galbis
;
D. Jornet
p. 99-131
Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable
Cyril Agrafeuil
p. 133-151
Derivations on noncommutative Banach algebras
Tsiu-Kwen Lee
p. 153-160
Topological and algebraic genericity of divergence and universality
Frédéric Bayart
p. 161-181
$L^1$
factorizations, moment problems and invariant subspaces
Isabelle Chalendar
;
Jonathan R. Partington
;
Rachael C. Smith
p. 183-194
Sommaire du
Fascicule no. 3
Classes of measures closed under mixing and convolution. Weak stability
J. K. Misiewicz
;
K. Oleszkiewicz
;
K. Urbanik
p. 195-213
A condition equivalent to uniform ergodicity
Maria Elena Becker
p. 215-218
Spectral mapping inclusions for the Phillips functional calculus in Banach spaces and algebras
Eva Fašangová
;
Pedro J. Miana
p. 219-226
Marcinkiewicz integrals on product spaces
H. Al-Qassem
;
A. Al-Salman
;
L. C. Cheng
;
Y. Pan
p. 227-234
On differentiability of strongly
$\alpha (\cdot )$
-paraconvex functions in non-separable Asplund spaces
S. Rolewicz
p. 235-244
An
$M_q({\Bbb T})$
-functional calculus for power-bounded operators on certain UMD spaces
Earl Berkson
;
T. A. Gillespie
p. 245-257
General Franklin systems as bases in
$H^1[0,1]$
Gegham G. Gevorkyan
;
Anna Kamont
p. 259-292