Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Geodesic
Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
Tome 501 (2021)
Précédent
On stable random variables with a complex stability index
I. A. Alekseev
p. 5-10
Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
V. I. Bogachev
;
S. V. Shaposhnikov
p. 11-15
On the spectrum of a non-self-adjoint quasiperiodic operator
D. I. Borisov
;
A. A. Fedotov
p. 16-21
Local Marchenko--Pastur law for sparse rectangular random matrices
F. Götze
;
D. A. Timushev
;
A. N. Tikhomirov
p. 22-25
On the maximal cut in a random hypergraph
P. A. Zakharov
;
D. A. Shabanov
p. 26-30
Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture
A. A. Zlotnik
;
A. S. Fedchenko
p. 31-37
On a family of complex-valued stochastic processes
I. A. Ibragimov
;
N. V. Smorodina
;
M. M. Faddeev
p. 38-41
Proof of stability in the Brower--Paul problem
A. P. Ivanov
p. 42-45
Dependence of the dynamics of a model of coupled oscillators on the number of oscillators
A. A. Kashchenko
p. 46-51
Construction of families of equations to describe irregular solutions in the Fermi--Pasta--Ulam problem
S. A. Kaschenko
p. 52-56
Mathematical structures related to the description of quantum states
V. V. Kozlov
;
O. G. Smolyanov
p. 57-61
Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws
V. V. Ostapenko
;
V. A. Kolotilov
p. 62-66
Hybrid grid-characteristic schemes for arctic seismic problems
I. B. Petrov
;
V. I. Golubev
;
E. K. Guseva
p. 67-73
Mathematical modeling of neo-Hookean material growth
P. I. Plotnikov
p. 74-78
Phaseless problem of determination of anisotropic conductivity in electrodynamic equations
V. G. Romanov
p. 79-83
Quotients of Severi--Brauer surfaces
A. S. Trepalin
p. 84-88
Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds
M. V. Shamolin
p. 89-94
Trajectory of an observer tracking the motion of an object around a convex set in
$\mathbb{R}^3$
V. I. Berdyshev
p. 95-97