Vector domain decomposition schemes for parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1530-1547 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.
@article{ZVMMF_2017_57_9_a9,
     author = {P. N. Vabishchevich},
     title = {Vector domain decomposition schemes for parabolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1530--1547},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a9/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Vector domain decomposition schemes for parabolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1530
EP  - 1547
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a9/
LA  - ru
ID  - ZVMMF_2017_57_9_a9
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Vector domain decomposition schemes for parabolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1530-1547
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a9/
%G ru
%F ZVMMF_2017_57_9_a9
P. N. Vabishchevich. Vector domain decomposition schemes for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1530-1547. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a9/

[1] Quarteroni A., Valli A., Domain decomposition methods for partial differential equations, Clarendon Press, Berlin, 1999 | MR

[2] Toselli A., Widlund O., Domain decomposition methods: algorithms and theory, Springer, Berlin, 2005 | MR

[3] Mathew T., Domain decomposition methods for the numerical solution of partial differential equations, Springer, Berlin–Heidelberg, 2008 | MR

[4] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer Academic Publishers, Dordrecht, 2002 | MR

[5] Cai X.-C., “Additive Schwarz algorithms for parabolic convection-diffusion equations”, Numer. Math., 60:1 (1991), 41–61 | DOI | MR

[6] Cai X.-C., “Multiplicative Schwarz methods for parabolic problems”, SIAM J. Sci Comput., 15:3 (1994), 587–603 | DOI | MR

[7] Kuznetsov Yu. A., “New algorithms for approximate realization of implicit difference schemes”, Sov. J. Numer. Anal. Math. Model., 3:2 (1988), 99–114 | MR

[8] Kuznetsov Yu. A., “Overlapping domain decomposition methods for FE-problems with elliptic singular perturbed operators”, Fourth international symposium on domain decomposition methods for partial differential equations, SIAM, Philadelphia, 1991, 223–241 | MR

[9] Zhuang Y., Sun X. H., “Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations”, SIAM J. Sci. Comput., 24:1 (2002), 335–358 | DOI | MR

[10] Zhuang Y., “An alternating explicit-implicit domain decomposition method for the parallel solution of parabolic equations”, J. Comput. Appl. Math., 206:1 (2007), 549–566 | DOI | MR

[11] Sun T., “Stability and error analysis on partially implicit schemes”, Numer. Methods Partial Differ. Equations, 21:4 (2005), 843–858 | DOI | MR

[12] Jun Y., Mai T.-Z., “ADI method — domain decomposition”, Appl. Numer. Math., 56:8 (2006), 1092–1107 | DOI | MR

[13] Jun Y., Mai T.-Z., “IPIC domain decomposition algorithm for parabolic problems”, Appl. Math. Comput., 177:1 (2006), 352–364 | DOI | MR

[14] Jun Y., Mai T.-Z., “Numerical analysis of the rectangular domain decomposition method”, Commun. Numer. Methods Eng., 25:7 (2009), 810–826 | DOI | MR

[15] Vabishchevich P. N., “A substructuring domain decomposition scheme for unsteady problems”, Comput. Meth. in Appl. Math., 11:2 (2011), 241–268 | DOI | MR

[16] Dryja M., “Substructuring methods for parabolic problems”, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1991, 264–271 | MR

[17] Laevsky Yu. M., “Domain decomposition methods for the solution of two-dimensional parabolic equations”, Variational-difference methods in problems of numerical analysis, Comp. Cent. Sib. Branch, USSR Acad. Sci., Novosibirsk, 1987, 112–128 | MR

[18] Samarskii A. A., Vabischevich P. N., “Vektornye additivnye skhemy dekompozitsii oblasti dlya parabolicheskikh zadach”, Differents. ur-niya, 31:9 (1995), 1563–1569

[19] Vabischevich P. N., “Raznostnye skhemy dekompozitsii raschetnoi oblasti pri reshenii nestatsionarnykh zadach”, Zh. vychisl. matem. i matem. fiz., 29:12 (1989), 1822–1829

[20] Vabishchevich P. N., “Parallel domain decomposition algorithms for time-dependent problems of mathematical physics”, Advances in Numerical Methods and Applications, World Schientific, Singapore, 1994, 293–299

[21] Vabischevich P. N., “Regionalno-additivnye raznostnye skhemy stabiliziruyuschei popravki dlya parabolicheskikh zadach”, Zh. vychisl. matem. i matem. fiz., 34:12 (1994), 1832–1842

[22] Vabishchevich P. N., “Domain decomposition methods with overlapping subdomains for the time-dependent problems of mathematical physics”, Comput. Meth. in Appl. Math., 8:4 (2008), 393–405 | DOI | MR

[23] Samarskii A. A., The theory of difference schemes, Marcel Dekker, New York, 2001 | MR

[24] Marchuk G. I., “Splitting and alternating direction methods”, Handbook of Numerical Analysis, v. I, North-Holland, Amsterdam, 1990, 197–462 | MR

[25] Vabishchevich P. N., Additive Operator-Difference Schemes: Splitting Schemes, de Gruyter, Berlin, 2014 | MR

[26] Abrashin V. N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki. I”, Differents. ur-niya, 26:2 (1990), 314–323

[27] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 44–51

[28] Abrashin V. N., Vabischevich P. N., “Vektornye additivnye skhemy dlya evolyutsionnykh uravnenii vtorogo poryadka”, Differents. ur-niya, 34:12 (1998), 1666–1674

[29] Samarskii A. A., “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93

[30] Vabishchevich P. N., “Domain decomposition schemes for the Stokes equation”, Publications de l'Institut Mathematique, 91:105 (2012), 155–162 | DOI | MR

[31] Mathew T. P., Polyakov P. L., Russo G., Wang J., “Domain decomposition operator splittings for the solution of parabolic equations”, SIAM J. Sci. Comput., 19:3 (1998), 912–932 | DOI | MR

[32] Saad Y., Iterative methods for sparse linear systems, Society for industrial mathematics, Philadelphia, 2003 | MR

[33] Morton K. W., Kellogg R. B., Numerical solution of convection-diffusion problems, Chapman Hall London, London, 1996 | MR

[34] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Izdatelskaya gruppa URSS, M., 1999

[35] Vabischevich P. N., “Raznostnye skhemy dekompozitsii oblasti dlya nestatsionarnykh zadach konvektsii/diffuzii”, Differents. ur-niya, 32:7 (1996), 923–927

[36] Vabishchevich P., Zakharov P., “Domain decomposition scheme for first-order evolution equations with nonselfadjoint operators”, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer, New York, 2013, 279–302 | DOI | MR