Locally one-dimensional difference scheme for a fractional tracer transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1517-1529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A locally one-dimensional scheme for a fractional tracer transport equation of order is considered. An a priori estimate is obtained for the solution of the scheme, and its convergence is proved in the uniform metric.
@article{ZVMMF_2017_57_9_a8,
     author = {B. A. Ashabokov and Z. V. Beshtokova and M. Kh. Shkhanukov-Lafishev},
     title = {Locally one-dimensional difference scheme for a fractional tracer transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1517--1529},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/}
}
TY  - JOUR
AU  - B. A. Ashabokov
AU  - Z. V. Beshtokova
AU  - M. Kh. Shkhanukov-Lafishev
TI  - Locally one-dimensional difference scheme for a fractional tracer transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1517
EP  - 1529
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/
LA  - ru
ID  - ZVMMF_2017_57_9_a8
ER  - 
%0 Journal Article
%A B. A. Ashabokov
%A Z. V. Beshtokova
%A M. Kh. Shkhanukov-Lafishev
%T Locally one-dimensional difference scheme for a fractional tracer transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1517-1529
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/
%G ru
%F ZVMMF_2017_57_9_a8
B. A. Ashabokov; Z. V. Beshtokova; M. Kh. Shkhanukov-Lafishev. Locally one-dimensional difference scheme for a fractional tracer transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1517-1529. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/

[1] Dinariev O. Yu., “Filtratsiya v treschinovatoi srede s fraktalnoi geometriei treschin”, Izv. RAN. Ser. Mekhan. zhidkosti i gaza, 1990, no. 5, 66–70

[2] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Nedebaevskaya relaksatsiya i diffuziya v fraktalnom prostranstve”, Dokl. AN, 361:6 (1998), 755–758

[3] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Avtovolnovye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. AN, 369:3 (1999), 323–333

[4] Kochubei A. Yu., “Diffuziya drobnogo poryadka”, Differents. ur-niya, 26 (1990), 660–670

[5] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschennye uravneniya perenosa i drobnye proizvodnye”, Dop. NAN. Ukraina, 1997, no. 12, 47–55

[6] Higmatylin P. P., “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status Solidi B, 133 (1986), 425–430 | DOI

[7] Goloviznin V. M., Kisilev V. P., Korotkii I. A., Yurkov Yu. P., Nekotorye osobennosti vychislitelnykh algoritmov dlya uravnenii drobnoi diffuzii, Preprint IBRAE-2002-01, IBRAE RAN, M., 2002

[8] Goloviznin V. M., Kisilev V. P., Korotkii I. A., Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint IBRAE-2002-01, IBRAE RAN, M., 2002

[9] Alikhanov A. A., “Boundary valure problems for the diffusion equation of the variable order in differential and difference setting”, App. Math. Comput., 219 (2012), 3938–3946 | DOI | MR

[10] Bangti J., Lazarov R., Pasciak J., Zhou Z., “Error analysis of a finite element method for the space-fractional parabolic equation”, Soc. Industrial and Appl. Math., 2014, no. 5, 2272–2294 | MR

[11] Bangti J., “An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data”, IMA J. Numerical Analys., 2015, 1–25

[12] Bangti J., Lazarov R., Pasciak J., Zhou Z., “A Petrov-Galerkin finite element method for fractional convection-diffusion equations”, IMA Soc. Industrial and Appl. Math., 54:1 (2016), 481–503 | MR

[13] Feder E., Fraktaly, Mir, M., 1991

[14] Shogenov V. Kh., Akhubekov A. A., Akhubekov R. A., “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izv. vuzov. Severo-Kavkazskii region, 2004, no. 1, 46–50

[15] Bazzaev A. K., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernye skhemy dlya uravneniya diffuzii s drobnoi proizvodnoi po vremeni v oblasti proizvolnoi formy”, Zh. vychisl. matem. i matem. fiziki, 56:1 (2016), 111–121

[16] Mazin I. P., Shmeter S. M., Oblaka. Stroenie i fizika obrazovaniya, Gidrometeoizdat, L., 1963, 280 pp.

[17] Ashabokov V. A., Shapovalov A. V., Konvektivnye oblaka: chislennye modeli i rezultaty modelirovaniya v estestvennykh usloviyakh i pri aktivnom vozdeistvii, Izd-vo KBNTs RAN, Nalchik, 2008, 254 pp.

[18] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp.

[19] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887

[20] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp.