Locally one-dimensional difference scheme for a fractional tracer transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1517-1529

Voir la notice de l'article provenant de la source Math-Net.Ru

A locally one-dimensional scheme for a fractional tracer transport equation of order is considered. An a priori estimate is obtained for the solution of the scheme, and its convergence is proved in the uniform metric.
@article{ZVMMF_2017_57_9_a8,
     author = {B. A. Ashabokov and Z. V. Beshtokova and M. Kh. Shkhanukov-Lafishev},
     title = {Locally one-dimensional difference scheme for a fractional tracer transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1517--1529},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/}
}
TY  - JOUR
AU  - B. A. Ashabokov
AU  - Z. V. Beshtokova
AU  - M. Kh. Shkhanukov-Lafishev
TI  - Locally one-dimensional difference scheme for a fractional tracer transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1517
EP  - 1529
VL  - 57
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/
LA  - ru
ID  - ZVMMF_2017_57_9_a8
ER  - 
%0 Journal Article
%A B. A. Ashabokov
%A Z. V. Beshtokova
%A M. Kh. Shkhanukov-Lafishev
%T Locally one-dimensional difference scheme for a fractional tracer transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1517-1529
%V 57
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/
%G ru
%F ZVMMF_2017_57_9_a8
B. A. Ashabokov; Z. V. Beshtokova; M. Kh. Shkhanukov-Lafishev. Locally one-dimensional difference scheme for a fractional tracer transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1517-1529. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a8/