Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1503-1516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm-Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.
@article{ZVMMF_2017_57_9_a7,
     author = {L. D. Akulenko and A. A. Gavrikov and S. V. Nesterov},
     title = {Numerical solution of vector {Sturm{\textendash}Liouville} problems with {Dirichlet} conditions and nonlinear dependence on the spectral parameter},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1503--1516},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/}
}
TY  - JOUR
AU  - L. D. Akulenko
AU  - A. A. Gavrikov
AU  - S. V. Nesterov
TI  - Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1503
EP  - 1516
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/
LA  - ru
ID  - ZVMMF_2017_57_9_a7
ER  - 
%0 Journal Article
%A L. D. Akulenko
%A A. A. Gavrikov
%A S. V. Nesterov
%T Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1503-1516
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/
%G ru
%F ZVMMF_2017_57_9_a7
L. D. Akulenko; A. A. Gavrikov; S. V. Nesterov. Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1503-1516. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/

[1] Akulenko L. D., Nesterov S. V., High-precision methods in eigenvalue problems and their applications, Chapman and Hall/CRC, Boca Raton, 2005 | MR

[2] Akulenko L. D., Nesterov S. V., “Sobstvennye kolebaniya raspredelennykh neodnorodnykh sistem, opisyvaemykh obobschennymi kraevymi zadachami”, PMM, 63:4 (1999), 645–654 | MR

[3] Akulenko L. D., Nesterov S. V., “Kolebaniya vzaimodeistvuyuschikh sistem s neodnorodnymi raspredelennymi parametrami”, Izv. RAN. Mekhan. tverd. tela, 1999, no. 2, 15–25

[4] Pryce J. D., Numerical solution of Sturm-Liouville problems, Oxford University Press, New York, 1993 | MR

[5] Hinton D., Schaefer P. W. (eds.), Spectral Theory Computational Methods of Sturm-Liouville Problems, Marcel Dekker, New York, 1997 | MR

[6] Amrein W. O., Hinz A. M., Pearson D. B. (eds.), Sturm-Liouville Theory: Past and Present, Birkhauser, Berlin, 2005 | MR

[7] Ledoux V., Study of Special algorithms for solving Sturm-Liouville and Schrodinger equations, Universiteit Gent, Gent, 2007

[8] Zettl A., Sturm-Liouville theory, AMS, Rhode Island, 2010 | MR

[9] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya uravneniya tipa Shturma-Liuvillya so svyazannymi granichnymi usloviyami, zavisyaschimi ot spektralnogo parametra”, Zh. vychisl. matem. i matem. fiz., 39:7 (1999), 1119–1133 | MR

[10] Konyukhova N. B., Staroverova I. B., “Modifikatsiya fazovogo metoda resheniya singulyarnykh samosopryazhennykh zadach Shturma-Liuvillya”, Zh. vychisl. matem. i matem. fiz., 37:10 (1997), 1183–1200 | MR

[11] Adamjan V., Langer H., Langer M., “A spectral theory for a $\lambda$-rational Sturm Liouville problem”, J. Differ. Equat., 171 (2001), 315–345 | DOI | MR

[12] Bohner M., Kratz W., Simon Hilscher R., “Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter”, Math. Nachr., 285:11–12 (2012), 1343–1356 | MR

[13] Ghelardoni P., Gheri G., Marletta M., “A polynomial approach to the spectral corrections for Sturm-Liouville problems”, J. Comput. Appl. Math., 185 (2006), 360–376 | DOI | MR

[14] Greenberg L., Marletta M., “The counting function for a $\lambda$-rational Sturm-Liouville problem”, Math. Nachr., 254–255:1 (2003), 133–152 | DOI | MR

[15] Eschwe D., Langer M., “Variational principles for eigenvalues of self-adjoint operator functions”, Integr. Equat. Oper. Th., 49 (2004), 287–321 | DOI | MR

[16] Kravchenko V. V., Torba S. M., “Modified spectral parameter power series representations for solutions of Sturm-Liouville equations and their applications”, Appl. Math. Comput., 238 (2014), 82–105 | DOI | MR

[17] Lutgen J. P., “Eigenvalue accumulation for singular Sturm-Liouville problems nonlinear in the spectral parameter”, J. Differ. Equat., 159:2 (1999), 515–542 | DOI | MR

[18] Mennicken R., Schmid H., Shkalikov A. A., “On the eigenvalue accumulation of Sturm-Liouville problems depending nonlinearly on the spectral parameter”, Math. Nachr., 189:1 (1998), 157–170 | DOI | MR

[19] Reutskiy S. Yu., “The method of external excitation for solving generalized Sturm-Liouville problems”, J. Comput. Appl. Math., 233:9 (2010), 2374–2386 | DOI | MR

[20] Abramov A. A., “Modifikatsiya odnogo metoda resheniya nelineinoi samosopryazhennoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 39–43 | MR

[21] Abramov A. A., Yukhno L. F., “Nelineinaya singulyarnaya spektralnaya zadacha dlya gamiltonovoi sistemy differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 599–609 | DOI

[22] Ghelardoni P., Gheri G., Marletta M., “Spectral corrections for Sturm-Liouville problems”, J. Comput. Appl. Math., 132 (2001), 443–459 | DOI | MR

[23] Akulenko L. D., Nesterov S. V., “Vliyanie defekta massy na chastoty i formy prodolnykh kolebanii sterzhnya”, Izv. RAN. Mekhan. tverdogo tela, 2014, no. 1, 135–144

[24] Kalinichenko V. A., Nesterov S. V., So A. N., “Volny Faradeya v pryamougolnom sosude s lokalnymi neregulyarnostyami dna”, Izv. RAN. MZhG, 2015, no. 4, 83–91 | MR

[25] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[26] Abramov A. A., “O vychislenii sobstvennykh znachenii nelineinoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:1 (2001), 29–38 | MR

[27] Dwyer H. I., Zettl A., “Eigenvalue computations for regular matrix Sturm-Liouville problems”, Electr. J. Differential Equat., 1995:5 (1995), 1–13 | MR

[28] Greenberg L., Marletta M., “Numerical solution of non-self-adjoint Sturm-Liouville problems and related systems”, SIAM J. Numer. Anal., 38:6 (2001), 1800–1845 | DOI | MR

[29] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956

[30] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, v. 2, Izd-vo inostr. lit., M., 1960

[31] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR

[32] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[33] Akulenko L. D., “K voprosu o statsionarnykh kolebaniyakh i vrascheniyakh”, Ukr. matem. zhurnal, 18:5 (1966), 7–18 | MR

[34] GSL-GNU Scientific Library, http://www.gnu.org/software/gsl/

[35] Burkardt J., RKF45. Runge-Kutta-Fehlberg ODE Solver, http://people.sc.fsu.edu/ ̃ jburkardt/c_src/rkf45/rkf45.html

[36] Kollatts L., Zadachi na sobstvennye znacheniya (s tekhnicheskimi prilozheniyami), Nauka, M., 1968 | MR

[37] Strett Dzh. V. (Relei), Teoriya zvuka, v. 1, GITTL, M., 1955

[38] Lyav A., Matematicheskaya teoriya uprugosti, ONTI NKTP SSSR, M.–L., 1935