@article{ZVMMF_2017_57_9_a7,
author = {L. D. Akulenko and A. A. Gavrikov and S. V. Nesterov},
title = {Numerical solution of vector {Sturm{\textendash}Liouville} problems with {Dirichlet} conditions and nonlinear dependence on the spectral parameter},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1503--1516},
year = {2017},
volume = {57},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/}
}
TY - JOUR AU - L. D. Akulenko AU - A. A. Gavrikov AU - S. V. Nesterov TI - Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1503 EP - 1516 VL - 57 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/ LA - ru ID - ZVMMF_2017_57_9_a7 ER -
%0 Journal Article %A L. D. Akulenko %A A. A. Gavrikov %A S. V. Nesterov %T Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1503-1516 %V 57 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/ %G ru %F ZVMMF_2017_57_9_a7
L. D. Akulenko; A. A. Gavrikov; S. V. Nesterov. Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1503-1516. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/
[1] Akulenko L. D., Nesterov S. V., High-precision methods in eigenvalue problems and their applications, Chapman and Hall/CRC, Boca Raton, 2005 | MR
[2] Akulenko L. D., Nesterov S. V., “Sobstvennye kolebaniya raspredelennykh neodnorodnykh sistem, opisyvaemykh obobschennymi kraevymi zadachami”, PMM, 63:4 (1999), 645–654 | MR
[3] Akulenko L. D., Nesterov S. V., “Kolebaniya vzaimodeistvuyuschikh sistem s neodnorodnymi raspredelennymi parametrami”, Izv. RAN. Mekhan. tverd. tela, 1999, no. 2, 15–25
[4] Pryce J. D., Numerical solution of Sturm-Liouville problems, Oxford University Press, New York, 1993 | MR
[5] Hinton D., Schaefer P. W. (eds.), Spectral Theory Computational Methods of Sturm-Liouville Problems, Marcel Dekker, New York, 1997 | MR
[6] Amrein W. O., Hinz A. M., Pearson D. B. (eds.), Sturm-Liouville Theory: Past and Present, Birkhauser, Berlin, 2005 | MR
[7] Ledoux V., Study of Special algorithms for solving Sturm-Liouville and Schrodinger equations, Universiteit Gent, Gent, 2007
[8] Zettl A., Sturm-Liouville theory, AMS, Rhode Island, 2010 | MR
[9] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya uravneniya tipa Shturma-Liuvillya so svyazannymi granichnymi usloviyami, zavisyaschimi ot spektralnogo parametra”, Zh. vychisl. matem. i matem. fiz., 39:7 (1999), 1119–1133 | MR
[10] Konyukhova N. B., Staroverova I. B., “Modifikatsiya fazovogo metoda resheniya singulyarnykh samosopryazhennykh zadach Shturma-Liuvillya”, Zh. vychisl. matem. i matem. fiz., 37:10 (1997), 1183–1200 | MR
[11] Adamjan V., Langer H., Langer M., “A spectral theory for a $\lambda$-rational Sturm Liouville problem”, J. Differ. Equat., 171 (2001), 315–345 | DOI | MR
[12] Bohner M., Kratz W., Simon Hilscher R., “Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter”, Math. Nachr., 285:11–12 (2012), 1343–1356 | MR
[13] Ghelardoni P., Gheri G., Marletta M., “A polynomial approach to the spectral corrections for Sturm-Liouville problems”, J. Comput. Appl. Math., 185 (2006), 360–376 | DOI | MR
[14] Greenberg L., Marletta M., “The counting function for a $\lambda$-rational Sturm-Liouville problem”, Math. Nachr., 254–255:1 (2003), 133–152 | DOI | MR
[15] Eschwe D., Langer M., “Variational principles for eigenvalues of self-adjoint operator functions”, Integr. Equat. Oper. Th., 49 (2004), 287–321 | DOI | MR
[16] Kravchenko V. V., Torba S. M., “Modified spectral parameter power series representations for solutions of Sturm-Liouville equations and their applications”, Appl. Math. Comput., 238 (2014), 82–105 | DOI | MR
[17] Lutgen J. P., “Eigenvalue accumulation for singular Sturm-Liouville problems nonlinear in the spectral parameter”, J. Differ. Equat., 159:2 (1999), 515–542 | DOI | MR
[18] Mennicken R., Schmid H., Shkalikov A. A., “On the eigenvalue accumulation of Sturm-Liouville problems depending nonlinearly on the spectral parameter”, Math. Nachr., 189:1 (1998), 157–170 | DOI | MR
[19] Reutskiy S. Yu., “The method of external excitation for solving generalized Sturm-Liouville problems”, J. Comput. Appl. Math., 233:9 (2010), 2374–2386 | DOI | MR
[20] Abramov A. A., “Modifikatsiya odnogo metoda resheniya nelineinoi samosopryazhennoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 39–43 | MR
[21] Abramov A. A., Yukhno L. F., “Nelineinaya singulyarnaya spektralnaya zadacha dlya gamiltonovoi sistemy differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 599–609 | DOI
[22] Ghelardoni P., Gheri G., Marletta M., “Spectral corrections for Sturm-Liouville problems”, J. Comput. Appl. Math., 132 (2001), 443–459 | DOI | MR
[23] Akulenko L. D., Nesterov S. V., “Vliyanie defekta massy na chastoty i formy prodolnykh kolebanii sterzhnya”, Izv. RAN. Mekhan. tverdogo tela, 2014, no. 1, 135–144
[24] Kalinichenko V. A., Nesterov S. V., So A. N., “Volny Faradeya v pryamougolnom sosude s lokalnymi neregulyarnostyami dna”, Izv. RAN. MZhG, 2015, no. 4, 83–91 | MR
[25] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[26] Abramov A. A., “O vychislenii sobstvennykh znachenii nelineinoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:1 (2001), 29–38 | MR
[27] Dwyer H. I., Zettl A., “Eigenvalue computations for regular matrix Sturm-Liouville problems”, Electr. J. Differential Equat., 1995:5 (1995), 1–13 | MR
[28] Greenberg L., Marletta M., “Numerical solution of non-self-adjoint Sturm-Liouville problems and related systems”, SIAM J. Numer. Anal., 38:6 (2001), 1800–1845 | DOI | MR
[29] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956
[30] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, v. 2, Izd-vo inostr. lit., M., 1960
[31] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR
[32] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969
[33] Akulenko L. D., “K voprosu o statsionarnykh kolebaniyakh i vrascheniyakh”, Ukr. matem. zhurnal, 18:5 (1966), 7–18 | MR
[34] GSL-GNU Scientific Library, http://www.gnu.org/software/gsl/
[35] Burkardt J., RKF45. Runge-Kutta-Fehlberg ODE Solver, http://people.sc.fsu.edu/ ̃ jburkardt/c_src/rkf45/rkf45.html
[36] Kollatts L., Zadachi na sobstvennye znacheniya (s tekhnicheskimi prilozheniyami), Nauka, M., 1968 | MR
[37] Strett Dzh. V. (Relei), Teoriya zvuka, v. 1, GITTL, M., 1955
[38] Lyav A., Matematicheskaya teoriya uprugosti, ONTI NKTP SSSR, M.–L., 1935