Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1503-1516
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm-Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.
            
            
            
          
        
      @article{ZVMMF_2017_57_9_a7,
     author = {L. D. Akulenko and A. A. Gavrikov and S. V. Nesterov},
     title = {Numerical solution of vector {Sturm{\textendash}Liouville} problems with {Dirichlet} conditions and nonlinear dependence on the spectral parameter},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1503--1516},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/}
}
                      
                      
                    TY - JOUR AU - L. D. Akulenko AU - A. A. Gavrikov AU - S. V. Nesterov TI - Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1503 EP - 1516 VL - 57 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/ LA - ru ID - ZVMMF_2017_57_9_a7 ER -
%0 Journal Article %A L. D. Akulenko %A A. A. Gavrikov %A S. V. Nesterov %T Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1503-1516 %V 57 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/ %G ru %F ZVMMF_2017_57_9_a7
L. D. Akulenko; A. A. Gavrikov; S. V. Nesterov. Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1503-1516. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a7/
