Multicriteria choice based on criteria importance methods with uncertain preference information
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1494-1502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multicriteria choice methods are developed by applying methods of criteria importance theory with uncertain information on criteria importance and with preferences varying along their scale. Formulas are given for computing importance coefficients and importance scale estimates that are “characteristic” representatives of the feasible set of these parameters. In the discrete case, an alternative with the highest probability of being optimal (for a uniform distribution of parameter value probabilities) can be used as the best one. It is shown how such alternatives can be found using the Monte Carlo method.
@article{ZVMMF_2017_57_9_a6,
     author = {A. P. Nelyubin and V. V. Podinovski},
     title = {Multicriteria choice based on criteria importance methods with uncertain preference information},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1494--1502},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/}
}
TY  - JOUR
AU  - A. P. Nelyubin
AU  - V. V. Podinovski
TI  - Multicriteria choice based on criteria importance methods with uncertain preference information
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1494
EP  - 1502
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/
LA  - ru
ID  - ZVMMF_2017_57_9_a6
ER  - 
%0 Journal Article
%A A. P. Nelyubin
%A V. V. Podinovski
%T Multicriteria choice based on criteria importance methods with uncertain preference information
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1494-1502
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/
%G ru
%F ZVMMF_2017_57_9_a6
A. P. Nelyubin; V. V. Podinovski. Multicriteria choice based on criteria importance methods with uncertain preference information. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1494-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/

[1] Podinovskii V. V., “Analiz reshenii pri mnozhestvennykh otsenkakh koeffitsientov vazhnosti kriteriev i veroyatnostei znachenii neopredelennykh faktorov v tselevoi funktsii”, Avtomatika i telemekhanika, 2004, no. 11, 141–159

[2] Podinovskii V. V., “Soglasitelnye resheniya mnogokriterialnykh zadach vybora”, Informatsionnye tekhnologii v nauke, obrazovanii i upravlenii, Materialy Mezhdunarodnoi konferentsii IT+S'16 (Gurzuf, 22.05.–01.06.2016 g.), ed. E.L. Gloriozov, INIT, M., 2016, 117–123

[3] Dawes R. D., Corrigat B., “Linear models in decision making”, Psychological Bulletin, 81 (1974), 95–106 | DOI

[4] Stillwell W. G., Seaver D. A., Edwards W., “A comparison of weight approximation techniques in multiattribute utility decision-making”, Organizational Behavior and Human Performance, 28 (1981), 62–77 | DOI

[5] Solymosi T., Dompi J., “Method for determining the weights of criteria: the centralized weights”, European Journal of Operational Research, 26 (1985), 35–41 | DOI | MR

[6] Barron F. J., “Selecting a best multiattribute alternative with partial information about attribute weights”, Acta Psychologica, 80 (1992), 91–103 | DOI

[7] Edwards W., Barron H. F., “SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement”, Organizational Behavior and Human Decision Processes, 60 (1994), 306–325 | DOI

[8] Roszkowska E., “Rank ordering criteria weighting methods — a comparative overview”, Optimum: Studia Ekonomiczne, 65:5(65) (2013), 14–33 | DOI

[9] Danielson M., Ekenberg L., “Using surrogate weights for handling preference strength in multi-criteria decisions”, Outlooks and insights on group decision and negotiation, eds. Kaminski B., Kersten G., Szapiro T., Springer, New York, 2015, 107–118 | DOI

[10] Barron F. J., Barret B. E., “Decision quality using ranked attribute weights”, Management Science, 42 (1996), 1515–1523 | DOI

[11] Belton V., Stewart T. J., Multiple criteria decision analysis. An integrated approach, Cluwer, Boston, 2003 | MR

[12] Podinovskii V. V., “Parametricheskaya vazhnost kriteriev i intervaly neopredelennosti zameschenii v analize mnogokriterialnykh zadach”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 1979–1998

[13] Podinovskii V. V., Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterialnykh zadachakh prinyatiya reshenii, Uchebnoe posobie, Fizmatlit, M., 2007

[14] Podinovskii V. V., Potapov M. A., Nelyubin A. P., Podinovskaya O. V., “Teoriya vazhnosti kriteriev: sovremennoe sostoyanie i napravleniya dalneishego ee razvitiya”, XII Vserossiiskoe soveschanie po problemam upravleniya VSPU-2014 (IPU RAN, Moskva, 16–19 iyunya 2014 g.), IPU RAN, M., 2014, 7697–7702 http://vspu2014.ipu.ru/node/8581/

[15] Podinovskii V. V., “Analiz zadach mnogokriterialnogo vybora metodami teorii vazhnosti kriteriev pri pomoschi kompyuternykh sistem podderzhki prinyatiya reshenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 2, 64–68

[16] Podinovskii V. V., Potapov M. A., “Teoreticheskie osnovy i sistemy podderzhki prinyatiya mnogokriterialnykh reshenii”, Materialy XXXIV Mezhdunarodnoi konferentsii “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese” (20–30 maya 2007 g., Gurzuf, Ukraina), Prilozhenie k zhurnalu “Otkrytoe obrazovanie”, 2007, 87–89

[17] Nelyubin A. P., Podinovskii V. V., “Vzaimosvyaz kachestvennoi i kolichestvennoi vazhnosti kriteriev v mnogokriterialnykh zadachakh prinyatiya reshenii”, Otkrytoe obrazovanie, 2011, no. 6(89), 108–115

[18] Fishburn P. C., Decision and value theory, Wiley, New York, 1964

[19] Kroese D. P., Taimre T., Botev Z. I., Handbook of Monte Carlo methods, Wiley, New York, 2011