Multicriteria choice based on criteria importance methods with uncertain preference information
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1494-1502
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Multicriteria choice methods are developed by applying methods of criteria importance theory with uncertain information on criteria importance and with preferences varying along their scale. Formulas are given for computing importance coefficients and importance scale estimates that are “characteristic” representatives of the feasible set of these parameters. In the discrete case, an alternative with the highest probability of being optimal (for a uniform distribution of parameter value probabilities) can be used as the best one. It is shown how such alternatives can be found using the Monte Carlo method.
            
            
            
          
        
      @article{ZVMMF_2017_57_9_a6,
     author = {A. P. Nelyubin and V. V. Podinovski},
     title = {Multicriteria choice based on criteria importance methods with uncertain preference information},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1494--1502},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/}
}
                      
                      
                    TY - JOUR AU - A. P. Nelyubin AU - V. V. Podinovski TI - Multicriteria choice based on criteria importance methods with uncertain preference information JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1494 EP - 1502 VL - 57 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/ LA - ru ID - ZVMMF_2017_57_9_a6 ER -
%0 Journal Article %A A. P. Nelyubin %A V. V. Podinovski %T Multicriteria choice based on criteria importance methods with uncertain preference information %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1494-1502 %V 57 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/ %G ru %F ZVMMF_2017_57_9_a6
A. P. Nelyubin; V. V. Podinovski. Multicriteria choice based on criteria importance methods with uncertain preference information. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1494-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a6/
