Optimization method in problems of acoustic cloaking of material bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1477-1493 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Optimization problems for a three-dimensional model of acoustic scattering are formulated and studied. These problems arise in designing tools for cloaking material bodies by applying the wave flow method. The cloaking effect is achieved due to an optimal choice of variable parameters of the inhomogeneous isotropic medium occupying the sought shell. The solvability of direct and optimization problems for the acoustic scattering model is proved, and sufficient conditions ensuring the uniqueness and stability of optimal solutions are established.
@article{ZVMMF_2017_57_9_a5,
     author = {G. V. Alekseev and A. V. Lobanov and Yu. E. Spivak},
     title = {Optimization method in problems of acoustic cloaking of material bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1477--1493},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a5/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - A. V. Lobanov
AU  - Yu. E. Spivak
TI  - Optimization method in problems of acoustic cloaking of material bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1477
EP  - 1493
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a5/
LA  - ru
ID  - ZVMMF_2017_57_9_a5
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A A. V. Lobanov
%A Yu. E. Spivak
%T Optimization method in problems of acoustic cloaking of material bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1477-1493
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a5/
%G ru
%F ZVMMF_2017_57_9_a5
G. V. Alekseev; A. V. Lobanov; Yu. E. Spivak. Optimization method in problems of acoustic cloaking of material bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1477-1493. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a5/

[1] Dolin L. S., “O vozmozhnosti sopostavleniya trekhmernykh elektromagnitnykh sistem s neodnorodnym anizotropnym zapolneniem”, Izvestiya vuzov. Radiofiz., 4:4 (1961), 964–967

[2] Pendry J. B., Shurig D., Smith D. R., “Controlling electromagnetic fields”, Science, 312:1 (2006), 1780–1782 | DOI | MR

[3] Leonhardt U., “Optical conformal mapping”, Science, 312 (2006), 1777–1780 | DOI | MR

[4] Cummer S. A., Schurig D., “One path to acoustic cloaking”, New Journal of Physics, 9 (2007), 45 | DOI

[5] Chen H., Chan C. T., “Acoustic cloaking in three dimensions using acoustic metamaterials”, Appl. Phys. Lett., 91 (2007), 183518 | DOI

[6] Cummer S. A., Popa B.-I., Schurig D. et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Lett., 100 (2008), 024301 | DOI

[7] Norris A. N., “Acoustic cloaking theory”, Proc. Roy. Soc. A, 464 (2008), 2411 | DOI | MR

[8] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G., “Isotropic transformation optics: Approximate acoustic and quantum cloaking”, New Journal of Physics, 10 (2008), 115024 | DOI | MR

[9] Kohn R., Onofrei D., Vogelius M., Weinstein M., “Cloaking via change of variables for the Helmholtz equation”, Comm. Pure Appl. Math., 63 (2010), 973–1016 | MR

[10] Alekseev G. V., Romanov V. G., “Ob odnom klasse nerasseivayuschikh akusticheskikh obolochek dlya modeli anizotropnoi akustiki”, Sib. zh. industrialnoi matem., 6:2 (2011), 1–6

[11] Nguyen H., “Full range scattering estimates and their application to cloaking”, Arch. Ration. Mech. Analys., 203 (2012), 769–807 | DOI | MR

[12] Liu H., “On near-cloak in acoustic scattering”, J. Diff. Eq., 254 (2013), 1230–1246 | DOI | MR

[13] Xu S., Wang Y., Zhang B., Chen H., “Invisibility cloaks from forward design to inverse design”, Sci. China Informat. Sci., 56 (2013), 120408:1–120408:11

[14] Popa B.-I., Cummer S. A., “Cloaking with optimized homogeneous anisotropic layers”, Phys. Rev. A, 79 (2009), 023806 | DOI

[15] Yu Z. Z., Feng Y. J., Xu X. F., Zhao J. M., Jiang T., “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic material”, J. Phys. D: Appl. Phys., 44 (2011), 185102 | DOI

[16] Wang X. H., Semouchkina E., “A route for efficient non-resonance cloaking by using multilayer dielectric coating”, Appl. Phys. Lett., 102 (2013), 113506 | DOI

[17] Alekseev G. V., “Upravlenie granichnym impedansom v dvumernoi zadache maskirovki materialnykh tel metodom volnovogo obtekaniya”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 2044–2061 | DOI

[18] Alekseev G. V., “Cloaking via impedance boundary condition for 2-D Helmholtz equation”, Appl. Analys., 93:2 (2014), 254–268 | DOI | MR

[19] Alekseev G. V., Problema nevidimosti v akustike, optike i teploperenose, Dalnauka, Vladivostok, 2016

[20] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Vidimye i nevidimye sredy v tomografii”, Dokl. AN, 357 (1997), 599–603

[21] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[22] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[23] Cessenat M., Mathematical methods in electromagnetism. Linear theory and applications, Series on Advances in Math. for Applied Sciences, 41, World Scientific, Singapore, 1996 | DOI | MR

[24] Smirnov Yu. G., Matematicheskie metody issledovaniya zadach elektrodinamiki, Informatsionno-izdatelskii tsentr PenzGU, Penza, 2009

[25] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, 93, Springer, New York, 2013, 405 | MR

[26] Bogolyubov A. N., Delitsyn A. L., Sveshnikov A. G., “O zadache vozbuzhdeniya volnovoda s neodnorodnym zapolneniem”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1869–1888

[27] Bogolyubov A. N., Delitsyn A. L., Sveshnikov A. G., “Ob usloviyakh razreshimosti zadachi vozbuzhdeniya radiovolnovoda”, Dokl. AN, 370:4 (2000), 453

[28] Samokhin A., Shestopalov Y., Kobayashi K., “Stationary iteration methods for solving 3D electromagnetic scattering problems”, Appl. Math. Comput., 222 (2013), 107–122 | DOI | MR

[29] Alekseev G. V., Lobanov A. V., “Otsenki ustoichivosti reshenii obratnykh ekstremalnykh zadach dlya uravneniya Gelmgoltsa”, Sib. zh. industrialnoi matem., 16:2 (2013), 14–25

[30] Alekseev G. V., Levin V. A., “Optimizatsionnyi metod otyskaniya parametrov neodnorodnoi zhidkoi sredy v zadache maskirovki materialnykh tel ot akusticheskoi lokatsii”, Dokl. AN, 454:4 (2014), 406–410 | DOI

[31] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi mir, M., 2010

[32] Melenk J. M., “Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions”, Math. Comput., 79 (2010), 1871–1914 | DOI | MR

[33] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986

[34] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999