The $p$-order maximum principle for an irregular optimal control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1471-1476 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general optimal control problem subject to irregular constraints is considered for which the factor of the objective functional in Pontryagin’s function may vanish. It turns out that, in the case of $p$-regular constraints, this drawback can be overcome and a constructive version of the $p$-order maximum principle can be formulated.
@article{ZVMMF_2017_57_9_a4,
     author = {A. Prusinska and A. A. Tret'yakov},
     title = {The $p$-order maximum principle for an irregular optimal control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1471--1476},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/}
}
TY  - JOUR
AU  - A. Prusinska
AU  - A. A. Tret'yakov
TI  - The $p$-order maximum principle for an irregular optimal control problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1471
EP  - 1476
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/
LA  - ru
ID  - ZVMMF_2017_57_9_a4
ER  - 
%0 Journal Article
%A A. Prusinska
%A A. A. Tret'yakov
%T The $p$-order maximum principle for an irregular optimal control problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1471-1476
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/
%G ru
%F ZVMMF_2017_57_9_a4
A. Prusinska; A. A. Tret'yakov. The $p$-order maximum principle for an irregular optimal control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1471-1476. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/

[1] Evtushenko Yu. G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, Nauchnoe izdanie VTs RAN, M., 2013

[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979

[3] Ledzewicz U., Schattler H., “High-order approximations and generalized necessory conditions for optimality”, SIAM J. Control Optshm., 37 (1999) | MR

[4] Tretyakov A. A., “Neobkhodimye i dostatochnye usloviya optimalnosti $p$-go poryadka”, Zh. vychisl. matem. i matem. fiz., 24:2 (1984), 203–209

[5] Tretyakov A. A., “Teorema o neyavnoi funktsii v vyrozhdennykh zadachakh”, Uspekhi matem. nauk, 42:5(257) (1987), 215–216

[6] Prusinska A., Tret'yakov A., “Necessory $p$-th order optimality conditions for irregular Lagrange problem in calculus of variations”, Math. Commun., 19 (2014) | MR