The $p$-order maximum principle for an irregular optimal control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1471-1476

Voir la notice de l'article provenant de la source Math-Net.Ru

The general optimal control problem subject to irregular constraints is considered for which the factor of the objective functional in Pontryagin’s function may vanish. It turns out that, in the case of $p$-regular constraints, this drawback can be overcome and a constructive version of the $p$-order maximum principle can be formulated.
@article{ZVMMF_2017_57_9_a4,
     author = {A. Prusinska and A. A. Tret'yakov},
     title = {The $p$-order maximum principle for an irregular optimal control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1471--1476},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/}
}
TY  - JOUR
AU  - A. Prusinska
AU  - A. A. Tret'yakov
TI  - The $p$-order maximum principle for an irregular optimal control problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1471
EP  - 1476
VL  - 57
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/
LA  - ru
ID  - ZVMMF_2017_57_9_a4
ER  - 
%0 Journal Article
%A A. Prusinska
%A A. A. Tret'yakov
%T The $p$-order maximum principle for an irregular optimal control problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1471-1476
%V 57
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/
%G ru
%F ZVMMF_2017_57_9_a4
A. Prusinska; A. A. Tret'yakov. The $p$-order maximum principle for an irregular optimal control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1471-1476. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/