The $p$-order maximum principle for an irregular optimal control problem
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1471-1476
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The general optimal control problem subject to irregular constraints is considered for which the factor of the objective functional in Pontryagin’s function may vanish. It turns out that, in the case of $p$-regular constraints, this drawback can be overcome and a constructive version of the $p$-order maximum principle can be formulated.
            
            
            
          
        
      @article{ZVMMF_2017_57_9_a4,
     author = {A. Prusinska and A. A. Tret'yakov},
     title = {The $p$-order maximum principle for an irregular optimal control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1471--1476},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/}
}
                      
                      
                    TY - JOUR AU - A. Prusinska AU - A. A. Tret'yakov TI - The $p$-order maximum principle for an irregular optimal control problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1471 EP - 1476 VL - 57 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/ LA - ru ID - ZVMMF_2017_57_9_a4 ER -
%0 Journal Article %A A. Prusinska %A A. A. Tret'yakov %T The $p$-order maximum principle for an irregular optimal control problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1471-1476 %V 57 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/ %G ru %F ZVMMF_2017_57_9_a4
A. Prusinska; A. A. Tret'yakov. The $p$-order maximum principle for an irregular optimal control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1471-1476. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a4/
