@article{ZVMMF_2017_57_9_a3,
author = {F. V. Lubyshev and M. E. Fairuzov},
title = {Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3<m\leqslant4$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1444--1470},
year = {2017},
volume = {57},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a3/}
}
TY - JOUR
AU - F. V. Lubyshev
AU - M. E. Fairuzov
TI - Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2017
SP - 1444
EP - 1470
VL - 57
IS - 9
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a3/
LA - ru
ID - ZVMMF_2017_57_9_a3
ER -
%0 Journal Article
%A F. V. Lubyshev
%A M. E. Fairuzov
%T Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1444-1470
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a3/
%G ru
%F ZVMMF_2017_57_9_a3
F. V. Lubyshev; M. E. Fairuzov. Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3
[1] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh zadach matematicheskoi fiziki, Kazan. gos. un-t, Kazan, 1976
[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989
[3] Samarskii A. A., Andreev V. B., Raznostnye skhemy dlya ellipticheskikh uravnenii, Nauka, M., 1976
[4] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Knizhnyi dom “LIBROKOM”, M., 2009
[5] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987
[6] Samarskii A. A., “Issledovanie tochnosti raznostnykh skhem dlya zadach s obobschennymi resheniyami”, Aktualnye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1984, 174–183
[7] Matus P. P., “Dvukhsloinye raznostnye skhemy s peremennymi vesami”, Vestn. AN Belarusi. Seriya fiz.-matem. nauk, 1993, no. 4, 15–21
[8] Maslovskaya L. V., “O skhodimosti raznostnykh metodov dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 12:6 (1972), 1444–1455
[9] Abrashin V. N., “Raznostnye skhemy dlya nelineinykh giperbolicheskikh uravnenii”, Differents. ur-niya, 11:2 (1975), 294–308
[10] Abrashin V. N., K teorii raznostnykh skhem dlya nelineinykh nestatsionarnykh uravnenii matematicheskoi fiziki, Avtoref. dis. dokt. fiz.-matem. nauk: 01.01.07, VTs AN SSSR, M., 1979
[11] Abrashin V. N., Asmolik V. A., “Lokalno-odnomernye raznostnye skhemy dlya mnogomernykh kvazilineinykh giperbolicheskikh uravnenii”, Differents. ur-niya, 18:7 (1982), 1107–1117
[12] Lyashko A. D., Fedotov E. M., “Issledovanie nelineinykh dvukhsloinykh operatorno-raznostnykh skhem s vesami”, Differents. ur-niya, 21:7 (1985), 1217–1227
[13] Matus P. P., “O bezuslovnoi skhodimosti nekotorykh raznostnykh skhem zadach gazovoi dinamiki”, Differents. ur-niya, 21:7 (1985), 1227–1238
[14] Matus P. P., Stanishevskaya L. V., “O bezuslovnoi skhodimosti raznostnykh skhem dlya nestatsionarnykh kvazilineinykh uravnenii matematicheskoi fiziki”, Differents. ur-niya, 27:7 (1991), 1203–1219
[15] Matus P. P., Moskalkov M. N., Scheglik V. S., “Soglasovannye otsenki tochnosti metoda setok dlya nelineinogo uravneniya vtorogo poryadka s obobschennymi resheniyami”, Differents. ur-niya, 31:7 (1995), 1249–1256
[16] Scheglik V. S., “Analiz raznostnoi skhemy, approksimiruyuschei tretyu kraevuyu zadachu dlya nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 37:8 (1997), 951–957
[17] Jovanovic B. S., Suli E., Analysis of finite difference schemes, Springer Series in Computat. Math., 46, Springer Science Business Media, London, 2014 | DOI | MR
[18] Jovanovic B. S., “Finite difference scheme for partial differential equations with weak solutions and irregular coefficients”, Comput. Methods Appl. Math., 4:1 (2004), 48–65 | MR
[19] Berikelashvili G., “On a nonlocal boundary-value problem for two-dimensional elliptic equation”, Comput. Methods Appl. Math., 3:1 (2003), 35–44 | MR
[20] Berikelashvili G., Gupta M. M., Mirianashvili M., “Convergence of fourth order compact difference schemesfor three-dimensional convection-diffusion equations”, SIAM J. Numer. Anal., 45:1 (2007), 443–455 | DOI | MR
[21] Berikelashvili G., Mirianashvili M., “On the convergence of difference schemes for generalized Benjamin-Bona-Mahony equation”, Numerical Methods for Partial Differential Equations, 30:1 (2014), 301–320 | DOI | MR
[22] Jovanovich B. S., Matus P. P., Shchehlik V. S., “The estimates of accuracy of difference schemes for the nonlinear heat equation with weak solutions”, Math. Modelling and Analysis, 5 (2000), 86–96 | MR
[23] Matus P. P., “O korrektnosti raznostnykh skhem dlya polulineinogo parabolicheskogo uravneniya s obobschennymi resheniyami”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2155–2175
[24] Matus P., “On convergence of difference schemes for IBVP for quasilinear parabolic equations with generalized solutions”, Comp. Meth. Appl. Math., 14:3 (2014), 361–371 | MR
[25] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[26] Potapov M. M., Approksimatsiya ekstremalnykh zadach v matematicheskoi fizike (giperbolicheskie uravneniya), Izd-vo MGU, M., 1985
[27] Ishmukhametov A. Z., Voprosy ustoichivosti i approksimatsii zadach optimalnogo upravleniya, VTs RAN, M., 1999
[28] Ishmukhametov A. Z., Voprosy ustoichivosti i approksimatsii zadach optimalnogo upravleniya sistemami s raspredelennymi parametrami, VTs RAN, M., 2001
[29] Lubyshev F. V., Raznostnye approksimatsii zadach optimalnogo upravleniya sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, BashGU, Ufa, 1999
[30] Lubyshev F. V., Fairuzov M. E., “Approksimatsii zadach optimalnogo upravleniya dlya polulineinykh ellipticheskikh uravnenii s razryvnymi koeffitsientami i sostoyaniyami, s upravleniyami v koeffitsientakh pri starshikh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 56:7 (2016), 1267–1293 | DOI
[31] Ladyzhenskaya O. A., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[32] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962
[33] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[34] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shkola, M., 1977