Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1444-1470 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet boundary value problem for nonlinear elliptic equations with mixed derivatives and unbounded nonlinearity is considered. A difference scheme for solving this class of problems and an implementing iterative process are constructed and investigated. The convergence of the iterative process is rigorously analyzed. This process is used to prove the existence and uniqueness of a solution to the nonlinear difference scheme approximating the original differential problem. Consistent with the smoothness of the desired solution, convergence rate estimates in the discrete norm of $W_{2,0}^2(\omega)$ for difference schemes approximating the nonlinear equation with unbounded nonlinearity are established.
@article{ZVMMF_2017_57_9_a3,
     author = {F. V. Lubyshev and M. E. Fairuzov},
     title = {Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3<m\leqslant4$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1444--1470},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a3/}
}
TY  - JOUR
AU  - F. V. Lubyshev
AU  - M. E. Fairuzov
TI  - Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1444
EP  - 1470
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a3/
LA  - ru
ID  - ZVMMF_2017_57_9_a3
ER  - 
%0 Journal Article
%A F. V. Lubyshev
%A M. E. Fairuzov
%T Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1444-1470
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a3/
%G ru
%F ZVMMF_2017_57_9_a3
F. V. Lubyshev; M. E. Fairuzov. Consistent convergence rate estimates in the grid $W_{2,0}^2(\omega)$ norm for difference schemes approximating nonlinear elliptic equations with mixed derivatives and solutions from $W_{2,0}^m(\Omega)$, $3
                      
                    

[1] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh zadach matematicheskoi fiziki, Kazan. gos. un-t, Kazan, 1976

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[3] Samarskii A. A., Andreev V. B., Raznostnye skhemy dlya ellipticheskikh uravnenii, Nauka, M., 1976

[4] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Knizhnyi dom “LIBROKOM”, M., 2009

[5] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987

[6] Samarskii A. A., “Issledovanie tochnosti raznostnykh skhem dlya zadach s obobschennymi resheniyami”, Aktualnye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1984, 174–183

[7] Matus P. P., “Dvukhsloinye raznostnye skhemy s peremennymi vesami”, Vestn. AN Belarusi. Seriya fiz.-matem. nauk, 1993, no. 4, 15–21

[8] Maslovskaya L. V., “O skhodimosti raznostnykh metodov dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 12:6 (1972), 1444–1455

[9] Abrashin V. N., “Raznostnye skhemy dlya nelineinykh giperbolicheskikh uravnenii”, Differents. ur-niya, 11:2 (1975), 294–308

[10] Abrashin V. N., K teorii raznostnykh skhem dlya nelineinykh nestatsionarnykh uravnenii matematicheskoi fiziki, Avtoref. dis. dokt. fiz.-matem. nauk: 01.01.07, VTs AN SSSR, M., 1979

[11] Abrashin V. N., Asmolik V. A., “Lokalno-odnomernye raznostnye skhemy dlya mnogomernykh kvazilineinykh giperbolicheskikh uravnenii”, Differents. ur-niya, 18:7 (1982), 1107–1117

[12] Lyashko A. D., Fedotov E. M., “Issledovanie nelineinykh dvukhsloinykh operatorno-raznostnykh skhem s vesami”, Differents. ur-niya, 21:7 (1985), 1217–1227

[13] Matus P. P., “O bezuslovnoi skhodimosti nekotorykh raznostnykh skhem zadach gazovoi dinamiki”, Differents. ur-niya, 21:7 (1985), 1227–1238

[14] Matus P. P., Stanishevskaya L. V., “O bezuslovnoi skhodimosti raznostnykh skhem dlya nestatsionarnykh kvazilineinykh uravnenii matematicheskoi fiziki”, Differents. ur-niya, 27:7 (1991), 1203–1219

[15] Matus P. P., Moskalkov M. N., Scheglik V. S., “Soglasovannye otsenki tochnosti metoda setok dlya nelineinogo uravneniya vtorogo poryadka s obobschennymi resheniyami”, Differents. ur-niya, 31:7 (1995), 1249–1256

[16] Scheglik V. S., “Analiz raznostnoi skhemy, approksimiruyuschei tretyu kraevuyu zadachu dlya nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 37:8 (1997), 951–957

[17] Jovanovic B. S., Suli E., Analysis of finite difference schemes, Springer Series in Computat. Math., 46, Springer Science Business Media, London, 2014 | DOI | MR

[18] Jovanovic B. S., “Finite difference scheme for partial differential equations with weak solutions and irregular coefficients”, Comput. Methods Appl. Math., 4:1 (2004), 48–65 | MR

[19] Berikelashvili G., “On a nonlocal boundary-value problem for two-dimensional elliptic equation”, Comput. Methods Appl. Math., 3:1 (2003), 35–44 | MR

[20] Berikelashvili G., Gupta M. M., Mirianashvili M., “Convergence of fourth order compact difference schemesfor three-dimensional convection-diffusion equations”, SIAM J. Numer. Anal., 45:1 (2007), 443–455 | DOI | MR

[21] Berikelashvili G., Mirianashvili M., “On the convergence of difference schemes for generalized Benjamin-Bona-Mahony equation”, Numerical Methods for Partial Differential Equations, 30:1 (2014), 301–320 | DOI | MR

[22] Jovanovich B. S., Matus P. P., Shchehlik V. S., “The estimates of accuracy of difference schemes for the nonlinear heat equation with weak solutions”, Math. Modelling and Analysis, 5 (2000), 86–96 | MR

[23] Matus P. P., “O korrektnosti raznostnykh skhem dlya polulineinogo parabolicheskogo uravneniya s obobschennymi resheniyami”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2155–2175

[24] Matus P., “On convergence of difference schemes for IBVP for quasilinear parabolic equations with generalized solutions”, Comp. Meth. Appl. Math., 14:3 (2014), 361–371 | MR

[25] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[26] Potapov M. M., Approksimatsiya ekstremalnykh zadach v matematicheskoi fizike (giperbolicheskie uravneniya), Izd-vo MGU, M., 1985

[27] Ishmukhametov A. Z., Voprosy ustoichivosti i approksimatsii zadach optimalnogo upravleniya, VTs RAN, M., 1999

[28] Ishmukhametov A. Z., Voprosy ustoichivosti i approksimatsii zadach optimalnogo upravleniya sistemami s raspredelennymi parametrami, VTs RAN, M., 2001

[29] Lubyshev F. V., Raznostnye approksimatsii zadach optimalnogo upravleniya sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, BashGU, Ufa, 1999

[30] Lubyshev F. V., Fairuzov M. E., “Approksimatsii zadach optimalnogo upravleniya dlya polulineinykh ellipticheskikh uravnenii s razryvnymi koeffitsientami i sostoyaniyami, s upravleniyami v koeffitsientakh pri starshikh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 56:7 (2016), 1267–1293 | DOI

[31] Ladyzhenskaya O. A., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[32] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962

[33] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[34] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shkola, M., 1977