@article{ZVMMF_2017_57_9_a12,
author = {A. N. Doludenko},
title = {On contact instabilities of viscoplastic fluids in two-dimensional setting},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1570--1578},
year = {2017},
volume = {57},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/}
}
TY - JOUR AU - A. N. Doludenko TI - On contact instabilities of viscoplastic fluids in two-dimensional setting JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1570 EP - 1578 VL - 57 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/ LA - ru ID - ZVMMF_2017_57_9_a12 ER -
A. N. Doludenko. On contact instabilities of viscoplastic fluids in two-dimensional setting. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1570-1578. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/
[1] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Ucheb. dlya vuzov, Drofa, M., 2003, 840 pp.
[2] Uilkinson U. L., Nenyutonovskie zhidkosti, Mir, M., 1964
[3] Kumar P., Mohan H., Singh G. J., “Rayleigh-Taylor instability of rotating oldroydian viscoelastic fluids in porous medium in presence of a variable magnetic field”, Transport in Porous Media, 56 (2004), 199–208 | DOI | MR
[4] Kumar P., Singh M., “Hydrodynamic and hydromagnetic stability of viscous-viscoelastic superposed fluids in presence of suspended particles”, Physical Separat. in Sci. Engng., 2007 (2007), 28908, 6 pp.
[5] Alexandrou A. N., McGilvreay T. M., Burgos G., “Steady Herschel-Bulkley fluid flow in three-dimensional expansions”, Non-Newtonian Fluid Mech., 100 (2001), 77–96 | DOI
[6] Frigaard I., Nouar C., “On three-dimensional linear stability of Poiseuille flow of Bingham fluids”, Phys. Fluids, 15:10 (2001), 2843–2851 | DOI | MR
[7] de Bruyn J. R., Habdas P., Kim S., “Fingering instability of a sheet of yield-stress fluid”, Phys. Rev. E, 66 (2002), 031504 | DOI
[8] A.N. Alexandrou, P.L. Menn, G. Georgiou, V. Entov, “Flow instabilities of Herschel-Bulkley fluids”, Non-Newtonian Fluid Mech., 116 (2003), 19–32 | DOI
[9] N. Maleki-Jirsaraei, A. Lindner, S. Rouhani, D. Bonn, “Saffman-Taylor instability in yield stress fluids”, J. Phys.: Condens. Matter., 17, 1219–1228
[10] Landry M. P., Taylor-Couette instability of a Bingham fluid, BMath University of Waterloo, 2003
[11] Malin M., “The turbulent flow of Bingham plastic fluids in smooth circular tubes”, Internat. Commun. in Heat and Mass Transfer., 24:6 (1997), 793–804 | DOI
[12] Malin M., “Turbulent pipe flow of Herschel-Bulkley fluids”, Internat. Commun. in Heat and Mass Transfer., 25:3 (1998), 321–330 | DOI
[13] Wang X., Gordaninejad F., “Flow analysis of field-controllable, electro and magneto-rheological fluids using Herschel-Bulkley model”, J. Intelligent Materials, Systems and Structures, 10:8 (1999), 601–608 | DOI
[14] Sedov L., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970, 492 pp.
[15] Bellman R., Pennington R. H., “Effects of surface tension and viscosity on Taylor instability”, Quarterly of Appl. Math., 12:2 (1954), 151–162 | DOI | MR
[16] Inogamov N. A., Demyanov A. Yu., Son E. E., Gidrodinamika peremeshivaniya, Izd-vo MFTI, 1999, 464 pp.
[17] Hirt C., Nichols B., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Computat. Physics, 39 (1981), 201–225 | DOI