On contact instabilities of viscoplastic fluids in two-dimensional setting
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1570-1578

Voir la notice de l'article provenant de la source Math-Net.Ru

The Richtmyer–Meshkov and Rayleigh–Taylor instabilities in viscoplastic (Bingham) fluids are studied in two-dimensional setting. The evolution of the Richtmyer–Meshkov instability in a Bingham fluid is analyzed as compared with its evolution in a Newtonian fluid. The critical amplitude of the initial perturbation in the velocity field is estimated. Numerical results obtained for Richtmyer–Meshkov and Rayleigh–Taylor instabilities in a Bingham fluid are presented and compared with those obtained for a Newtonian fluid.
@article{ZVMMF_2017_57_9_a12,
     author = {A. N. Doludenko},
     title = {On contact instabilities of viscoplastic fluids in two-dimensional setting},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1570--1578},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/}
}
TY  - JOUR
AU  - A. N. Doludenko
TI  - On contact instabilities of viscoplastic fluids in two-dimensional setting
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1570
EP  - 1578
VL  - 57
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/
LA  - ru
ID  - ZVMMF_2017_57_9_a12
ER  - 
%0 Journal Article
%A A. N. Doludenko
%T On contact instabilities of viscoplastic fluids in two-dimensional setting
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1570-1578
%V 57
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/
%G ru
%F ZVMMF_2017_57_9_a12
A. N. Doludenko. On contact instabilities of viscoplastic fluids in two-dimensional setting. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1570-1578. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/