On contact instabilities of viscoplastic fluids in two-dimensional setting
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1570-1578 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Richtmyer–Meshkov and Rayleigh–Taylor instabilities in viscoplastic (Bingham) fluids are studied in two-dimensional setting. The evolution of the Richtmyer–Meshkov instability in a Bingham fluid is analyzed as compared with its evolution in a Newtonian fluid. The critical amplitude of the initial perturbation in the velocity field is estimated. Numerical results obtained for Richtmyer–Meshkov and Rayleigh–Taylor instabilities in a Bingham fluid are presented and compared with those obtained for a Newtonian fluid.
@article{ZVMMF_2017_57_9_a12,
     author = {A. N. Doludenko},
     title = {On contact instabilities of viscoplastic fluids in two-dimensional setting},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1570--1578},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/}
}
TY  - JOUR
AU  - A. N. Doludenko
TI  - On contact instabilities of viscoplastic fluids in two-dimensional setting
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1570
EP  - 1578
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/
LA  - ru
ID  - ZVMMF_2017_57_9_a12
ER  - 
%0 Journal Article
%A A. N. Doludenko
%T On contact instabilities of viscoplastic fluids in two-dimensional setting
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1570-1578
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/
%G ru
%F ZVMMF_2017_57_9_a12
A. N. Doludenko. On contact instabilities of viscoplastic fluids in two-dimensional setting. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1570-1578. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a12/

[1] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Ucheb. dlya vuzov, Drofa, M., 2003, 840 pp.

[2] Uilkinson U. L., Nenyutonovskie zhidkosti, Mir, M., 1964

[3] Kumar P., Mohan H., Singh G. J., “Rayleigh-Taylor instability of rotating oldroydian viscoelastic fluids in porous medium in presence of a variable magnetic field”, Transport in Porous Media, 56 (2004), 199–208 | DOI | MR

[4] Kumar P., Singh M., “Hydrodynamic and hydromagnetic stability of viscous-viscoelastic superposed fluids in presence of suspended particles”, Physical Separat. in Sci. Engng., 2007 (2007), 28908, 6 pp.

[5] Alexandrou A. N., McGilvreay T. M., Burgos G., “Steady Herschel-Bulkley fluid flow in three-dimensional expansions”, Non-Newtonian Fluid Mech., 100 (2001), 77–96 | DOI

[6] Frigaard I., Nouar C., “On three-dimensional linear stability of Poiseuille flow of Bingham fluids”, Phys. Fluids, 15:10 (2001), 2843–2851 | DOI | MR

[7] de Bruyn J. R., Habdas P., Kim S., “Fingering instability of a sheet of yield-stress fluid”, Phys. Rev. E, 66 (2002), 031504 | DOI

[8] A.N. Alexandrou, P.L. Menn, G. Georgiou, V. Entov, “Flow instabilities of Herschel-Bulkley fluids”, Non-Newtonian Fluid Mech., 116 (2003), 19–32 | DOI

[9] N. Maleki-Jirsaraei, A. Lindner, S. Rouhani, D. Bonn, “Saffman-Taylor instability in yield stress fluids”, J. Phys.: Condens. Matter., 17, 1219–1228

[10] Landry M. P., Taylor-Couette instability of a Bingham fluid, BMath University of Waterloo, 2003

[11] Malin M., “The turbulent flow of Bingham plastic fluids in smooth circular tubes”, Internat. Commun. in Heat and Mass Transfer., 24:6 (1997), 793–804 | DOI

[12] Malin M., “Turbulent pipe flow of Herschel-Bulkley fluids”, Internat. Commun. in Heat and Mass Transfer., 25:3 (1998), 321–330 | DOI

[13] Wang X., Gordaninejad F., “Flow analysis of field-controllable, electro and magneto-rheological fluids using Herschel-Bulkley model”, J. Intelligent Materials, Systems and Structures, 10:8 (1999), 601–608 | DOI

[14] Sedov L., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970, 492 pp.

[15] Bellman R., Pennington R. H., “Effects of surface tension and viscosity on Taylor instability”, Quarterly of Appl. Math., 12:2 (1954), 151–162 | DOI | MR

[16] Inogamov N. A., Demyanov A. Yu., Son E. E., Gidrodinamika peremeshivaniya, Izd-vo MFTI, 1999, 464 pp.

[17] Hirt C., Nichols B., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Computat. Physics, 39 (1981), 201–225 | DOI