New compacton solutions of an extended Rosenau–Pikovsky equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1560-1569

Voir la notice de l'article provenant de la source Math-Net.Ru

The $\mathrm{K}(\cos^m, \cos^n)$ equation is proposed, which extends the Rosenau–Pikovsky $\mathrm{K}(\cos)$ equation to the case of power-law dependence of nonlinearity and dispersion. The properties of compacton and kovaton solutions are numerically studied and compared with solutions of the $\mathrm{K}(2,2)$ and $\mathrm{K}(\cos)$ equations. New types of peak-shaped compactons and kovatons of various amplitudes are found.
@article{ZVMMF_2017_57_9_a11,
     author = {S. P. Popov},
     title = {New compacton solutions of an extended {Rosenau{\textendash}Pikovsky} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1560--1569},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - New compacton solutions of an extended Rosenau–Pikovsky equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1560
EP  - 1569
VL  - 57
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/
LA  - ru
ID  - ZVMMF_2017_57_9_a11
ER  - 
%0 Journal Article
%A S. P. Popov
%T New compacton solutions of an extended Rosenau–Pikovsky equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1560-1569
%V 57
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/
%G ru
%F ZVMMF_2017_57_9_a11
S. P. Popov. New compacton solutions of an extended Rosenau–Pikovsky equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1560-1569. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/