New compacton solutions of an extended Rosenau–Pikovsky equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1560-1569 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $\mathrm{K}(\cos^m, \cos^n)$ equation is proposed, which extends the Rosenau–Pikovsky $\mathrm{K}(\cos)$ equation to the case of power-law dependence of nonlinearity and dispersion. The properties of compacton and kovaton solutions are numerically studied and compared with solutions of the $\mathrm{K}(2,2)$ and $\mathrm{K}(\cos)$ equations. New types of peak-shaped compactons and kovatons of various amplitudes are found.
@article{ZVMMF_2017_57_9_a11,
     author = {S. P. Popov},
     title = {New compacton solutions of an extended {Rosenau{\textendash}Pikovsky} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1560--1569},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - New compacton solutions of an extended Rosenau–Pikovsky equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1560
EP  - 1569
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/
LA  - ru
ID  - ZVMMF_2017_57_9_a11
ER  - 
%0 Journal Article
%A S. P. Popov
%T New compacton solutions of an extended Rosenau–Pikovsky equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1560-1569
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/
%G ru
%F ZVMMF_2017_57_9_a11
S. P. Popov. New compacton solutions of an extended Rosenau–Pikovsky equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1560-1569. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/

[1] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Kharris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988

[2] Petviashvili V. I., Pokhotelov O. A., Uedinennye volny v plazme i atmosfere, Energoatomizdat, M., 1989

[3] Makhankov V. G., “Solitony i chislennyi eksperiment”, Fiz. elementarnykh chastits i atomnogo yadra, 14:1 (1983), 123–180

[4] Belova T. I., Kudryavtsev A. E., “Solitony i ikh vzaimodeistviya v klassicheskoi teorii polya”, Uspekhi fiz. nauk, 167:4 (1997), 377–406 | DOI

[5] Zakharov V. E., “K probleme stokhastizatsii odnomernykh tsepochek nelineinykh ostsillyatorov”, Zh. eksperim. i teor. fiz., 65:1(7) (1973), 219–225

[6] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater., 339 (2013), 133–137 | DOI

[7] Shamsutdinov M. A., Shamsutdinov D. M., Ekomasov E. G., “Dinamika domennykh stenok v ortorombicheskikh antiferromagnetikakh vblizi predelnoi skorosti”, Fizika metallov i metallovedenie, 96:4 (2003), 16–22

[8] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987

[9] Popov S. P., “Chislennoe issledovanie pikonov i k-solitonov uravnenii Kamassy-Kholma i Kholma-Khona”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1317–1325

[10] Rosenau P., Hyman J. M., “Compactons: solitons with finite wavelengths”, Phys. Rev. Lett., 70:5 (1993), 564–567 | DOI

[11] Cooper F., Hyman J. M., Khare A., “Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations”, Phys. Rev. E, 64:2 (2001), 1–5 | DOI

[12] Rosenau P., Levy D., “Compactons in a class of nonlinearly quintic equations”, Phys. Lett. A, 252 (1999), 297–306 | DOI | MR

[13] Rosenau P., “Nonlinear dispersion and compact structures”, Phys. Rev. Lett., 73:13 (1994), 1737–1741 | DOI | MR

[14] Rosenau P., “On nonanalytic solitary waves formed by a nonlinear dispersion”, Phys. Lett. A, 230:5/6 (1997), 305–318 | DOI | MR

[15] Rosenau P., “On a class of nonlinear dispersive-dissipative interactions”, Physica D, 230:5/6 (1998), 535–546 | MR

[16] Rosenau P., “Compact and noncompact dispersive structures”, Phys. Lett. A, 275:3 (2000), 193–203 | DOI | MR

[17] Garralon J., Villatoro F. R., “Numerical evaluation of compactons and kovatons of the K(cos) Rosenau-Pikovski equation”, Math. Comput. Modeling, 55:7–8 (2012), 1858–1865 | DOI | MR

[18] Garralon J., Rus F., Villatoro F. R., “Numerical interactions between compactons and kovatons Rosenau-Pikovski K(cos) equation”, Communicat. in Nonlinear Sci. Numerical Simulation, 18:7 (2013), 1576–1588 | DOI | MR

[19] de Frutos J., López-Marcos M. A., Sanz-Serna J. M., “A finite difference scheme for the K(2, 2) compacton equation”, J. Comput. Phys., 120:2 (1995), 248–252 | DOI | MR

[20] Saucez P., Vande Wouwer A., Zegeling P. A., “Adaptive method of lines solutions for the extended fifth-order Korteveg-de Vries”, J. Comput. and Appl. Math., 183:2 (2005), 343–357 | DOI | MR

[21] Rus F., Villatoro F. R., “Padé numerical method for the Rosenau-Hyman compacton equation”, Math. Comput. Simulat. (MATCOM), 76:1 (2007), 188–192 | DOI | MR

[22] Garralon J., Rus F., Villatoro F. R., “Removing trailing tails and delays indused by artifical dissipation in Pad'e numerical schemes for stable compacton collisions”, Appl. Math. Comput., 220 (2013), 185–192 | DOI | MR

[23] Chertock A., Levy D., “Particle methods for dispersive equations”, J. Comput. Phys., 171:2 (2001), 708–730 | DOI | MR

[24] Sanz-Serna J. M., Christie I., “Petrov-Galerkin methods for nonlinear dispersive waves”, J. Comput. Phys., 39:1 (1981), 94–102 | DOI | MR

[25] Levy D., Shu C.-W., Yan J., “Local discontinuous Galerkin methods for nonlinear dispersive equations”, J. Comput. Phys., 196:2 (2004), 751–772 | DOI | MR

[26] Rus F., Villatoro F., “Radiation in Numerical Compactons from Finite Element Methods”, Proc. of the 8th WSEAS Internat. Conference on Appl. Math. (Tenerife, Spain, December 16–18, 2005), 19–24

[27] Popov S. P., “O primenenii kvazispektralnogo metoda Fure k solitonosoderzhaschim uravneniyam”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2176–2183

[28] Popov S. P., “Chislennyi analiz solitonnykh reshenii modifitsirovannogo uravneniya Kortevega-de Vriza-sinus-Gordona”, Zh. vychisl. matem. i matem. fiz., 55:3 (2015), 114–124