New compacton solutions of an extended Rosenau–Pikovsky equation
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1560-1569
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The $\mathrm{K}(\cos^m, \cos^n)$ equation is proposed, which extends the Rosenau–Pikovsky $\mathrm{K}(\cos)$ equation to the case of power-law dependence of nonlinearity and dispersion. The properties of compacton and kovaton solutions are numerically studied and compared with solutions of the $\mathrm{K}(2,2)$ and $\mathrm{K}(\cos)$ equations. New types of peak-shaped compactons and kovatons of various amplitudes are found.
            
            
            
          
        
      @article{ZVMMF_2017_57_9_a11,
     author = {S. P. Popov},
     title = {New compacton solutions of an extended {Rosenau{\textendash}Pikovsky} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1560--1569},
     publisher = {mathdoc},
     volume = {57},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/}
}
                      
                      
                    TY - JOUR AU - S. P. Popov TI - New compacton solutions of an extended Rosenau–Pikovsky equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1560 EP - 1569 VL - 57 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/ LA - ru ID - ZVMMF_2017_57_9_a11 ER -
S. P. Popov. New compacton solutions of an extended Rosenau–Pikovsky equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1560-1569. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a11/
