On one model problem for the reaction-diffusion-advection equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1548-1559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
@article{ZVMMF_2017_57_9_a10,
     author = {M. A. Davydova and S. A. Zakharova and N. T. Levashova},
     title = {On one model problem for the reaction-diffusion-advection equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1548--1559},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a10/}
}
TY  - JOUR
AU  - M. A. Davydova
AU  - S. A. Zakharova
AU  - N. T. Levashova
TI  - On one model problem for the reaction-diffusion-advection equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1548
EP  - 1559
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a10/
LA  - ru
ID  - ZVMMF_2017_57_9_a10
ER  - 
%0 Journal Article
%A M. A. Davydova
%A S. A. Zakharova
%A N. T. Levashova
%T On one model problem for the reaction-diffusion-advection equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1548-1559
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a10/
%G ru
%F ZVMMF_2017_57_9_a10
M. A. Davydova; S. A. Zakharova; N. T. Levashova. On one model problem for the reaction-diffusion-advection equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1548-1559. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a10/

[1] Volkov V. T., Nefedov N. N., Grachev N. E., Senin D. S., “Otsenka parametrov fronta vnutriplastovogo goreniya pri zakachke vozdukha v neftyanoi plast”, Neftyanoe khozyaistvo, 2010, no. 4, 93–96

[2] Levashova N. T., Mukhartova Yu. V., Davydova M. A., Shapkina N. E., Olchev A. V., “Primenenie teorii kontrastnykh struktur dlya opisaniya polya skorosti vetra v prostranstvenno neodnorodnom rastitelnom pokrove”, Vestn. MGU. Seriya 3. Fizika, astronomiya, 2015, no. 3, 3–10

[3] Bozhevolnov Yu. V., Nefedov N. N., “Dvizhenie fronta v parabolicheskoi zadache reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 276–285

[4] Nefedov N. N., Nikitin A. G., Recke L., Moving fronts in integro-parabolik reaction-diffusion-advection equations, Preprint 2007-22, Institut für Mathematik an der Mathematisch-Naturwissenschaftlichen Fakultät II der Humboldt-Universität zu Berlin, 2007, 17 pp.

[5] Nefedov N. N., Davydova M. A., “Kontrastnye struktury v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Differents. ur-niya, 48:5 (2012), 738–748

[6] Nefedov N. N., Davydova M. A., “Kontrastnye struktury v singulyarno vozmuschennykh kvazilineinykh uravneniyakh reaktsiya-diffuziya-advektsiya”, Differents. ur-niya, 49:6 (2013), 715–733

[7] Volkov V. T., Nefedov N. N., “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Lect. Notes in Comput. Sci., 8236, 2013, 524–531 | DOI | MR

[8] Levashova N. T., Nefedov N. N., Yagremtsev A. V., “Kontrastnye struktury v uravneniyakh reaktsiya-diffuziya-advektsiya v sluchae sbalansirovannoi advektsii”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 365–376 | DOI

[9] Davydova M. A., “Suschestvovanie i ustoichivost reshenii s pogranichnymi sloyami v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Matem. zametki, 98:6 (2015), 853–864 | DOI

[10] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990

[11] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. ur-niya, 31:7 (1995), 1142–1149

[12] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984

[13] Kanel Ya. I., “O stabilizatsii reshenii zadachi Koshi dlya uravnenii, vstrechayuschikhsya v teorii goreniya”, Matem. sb., 59(101), dopolnitelnyi (1962), 245–288

[14] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Tr. MIAN, 268, 2010, 268–283

[15] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York–London, 1992 | MR

[16] Kalitkin N. N., Koryakin P. V., Metody matematicheskoi fiziki, Akademiya, M., 2013