On the existence of mosaic-skeleton approximations for discrete analogues of integral operators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1421-1432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.
@article{ZVMMF_2017_57_9_a1,
     author = {A. A. Kashirin and M. Yu. Taltykina},
     title = {On the existence of mosaic-skeleton approximations for discrete analogues of integral operators},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1421--1432},
     year = {2017},
     volume = {57},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a1/}
}
TY  - JOUR
AU  - A. A. Kashirin
AU  - M. Yu. Taltykina
TI  - On the existence of mosaic-skeleton approximations for discrete analogues of integral operators
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1421
EP  - 1432
VL  - 57
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a1/
LA  - ru
ID  - ZVMMF_2017_57_9_a1
ER  - 
%0 Journal Article
%A A. A. Kashirin
%A M. Yu. Taltykina
%T On the existence of mosaic-skeleton approximations for discrete analogues of integral operators
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1421-1432
%V 57
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a1/
%G ru
%F ZVMMF_2017_57_9_a1
A. A. Kashirin; M. Yu. Taltykina. On the existence of mosaic-skeleton approximations for discrete analogues of integral operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1421-1432. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a1/

[1] Tyrtyshnikov E. E., “Metody bystrogo umnozheniya i reshenie uravnenii”, Matrichnye metody i vychisleniya, IVM RAN, M., 1999, 4–41

[2] Rokhlin V., “Rapid solution of integral equations of classic potential theory”, J. Comput. Physics, 60:2 (1985), 187–207 | DOI | MR

[3] Hackbush W., Novak Z. P., “On the fast matrix multiplication in the boundary element method by panel clustering”, Numer. Math., 54:4 (1989), 463–492 | DOI | MR

[4] Beylkin G., Coifman R., Rokhlin V., “Fast wavelet transform and numerical algorithms I”, Comm. Pure Appl. Math., 44:2 (1991), 141–183 | DOI | MR

[5] Brandt A., Lubrecht A. A., “Multilevel matrix multiplication and fast solution of integral equations”, J. Comput. Phys., 90:2 (1990), 348–370 | DOI | MR

[6] Tyrtyshnikov E. E., “Mosaic-skeleton approximations”, Calcolo, 33:1–2 (1996), 47–57 | DOI | MR

[7] Goreinov S. A., “Mozaichno-skeletonnye approksimatsii matrits, porozhdennykh asimptoticheski gladkimi i ostsillyatsionnymi yadrami”, Matrichnye metody i vychisleniya, IVM RAN, M., 1999, 42–76

[8] Savostyanov D. V., Bystraya polilineinaya approksimatsiya matrits i integralnye uravneniya, Dis. ... kand. fiz.-matem. nauk, IVM, M., 2006

[9] Tyrtyshnikov E. E., “Incomplete cross approximations in the mosaic-skeleton method”, Computing, 64:4 (2000), 367–380 | DOI | MR

[10] Kashirin A. A., Issledovanie i chislennoe reshenie integralnykh uravnenii trekhmernykh statsionarnykh zadach difraktsii akusticheskikh voln, Dis. ... kand. fiz.-matem. nauk, VTs DVO RAN, Khabarovsk, 2006

[11] Kashirin A. A., Smagin S. I., “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1492–1505

[12] Smagin S. I., “Chislennoe reshenie integralnogo uravneniya I roda so slaboi osobennostyu dlya plotnosti potentsiala prostogo sloya”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1663–1673

[13] Kashirin A. A., Smagin S. I., Taltykina M. Yu., “Primenenie mozaichno-skeletonnogo metoda pri chislennom reshenii trekhmernykh zadach Dirikhle dlya uravneniya Gelmgoltsa v integralnoi forme”, Zh. vychisl. matem. i matem. fiz., 56:4 (2016), 625–638 | DOI

[14] Saad Y., Schultz M., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput., 7:3 (1986), 856–869 | DOI | MR

[15] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000 | MR

[16] Meyer C. D., Matrix analysis and applied linear algebra, SIAM, Philadelphia, PA, 2000 | MR

[17] Kashirin A. A., Smagin S. I., Taltykina M. Yu., “Realizatsiya mozaichno-skeletonnogo metoda v zadachakh Dirikhle dlya uravneniya Gelmgoltsa”, Informatika i sistemy upravleniya, 2015, no. 4(46), 32–42