@article{ZVMMF_2017_57_9_a0,
author = {A. V. Razgulin and S. V. Sazonova},
title = {On the matrix {Fourier} filtering problem for a class of models of nonlinear optical systems with a feedback},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1403--1420},
year = {2017},
volume = {57},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a0/}
}
TY - JOUR AU - A. V. Razgulin AU - S. V. Sazonova TI - On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1403 EP - 1420 VL - 57 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a0/ LA - ru ID - ZVMMF_2017_57_9_a0 ER -
%0 Journal Article %A A. V. Razgulin %A S. V. Sazonova %T On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1403-1420 %V 57 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a0/ %G ru %F ZVMMF_2017_57_9_a0
A. V. Razgulin; S. V. Sazonova. On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 9, pp. 1403-1420. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_9_a0/
[1] Goodman J. W., Introduction to Fourier optics, McGraw Hill, New York, 1968
[2] Degtiarev E. V., Vorontsov M. A., “Spatial filtering in nonlinear two-dimensional feedback systems: phase-distortion suppression”, J. Opt. Soc. Amer. Ser. B, 12:7 (1995), 1238–1248 | DOI
[3] Justh E. W., Vorontsov M. A., Garhart G., Beresnev L. A., Krishnapasad P. S., “Adaptive optics with advanced phase contrast techniques. Part II: High resolution wavefront control”, J. Opt. Soc. Amer. A, 18:6 (2001), 1300–1311 | DOI
[4] Larichev A. V., Nikolaev I. P., Shmalgauzen V. I., “Opticheskie dissipativnye struktury s upravlyaemym prostranstvennym periodom v nelineinoi sisteme s fure-filtrom v konture obratnoi svyazi”, Kvant. elektron., 23:10 (1996), 894–899
[5] Larichev A. V., Nikolaev I. P., Violino P., “LCLV-based system for high resolution wavefront correction: phase knife as a feedback intensity producer”, Opt. Commun., 138 (1997), 127–135 | DOI
[6] Nikolaev I. P., Larichev A. V., Shmal'gauzen V. I., “Controlled optical structures in a nonlinear system involving the suppression of low spatial frequencies in the feedback loop”, Quantum Electronics, 30:7 (2000), 617–622 | DOI
[7] Larichev A. V., Nikolaev I. P., Costamagna S., Violino P., “Advanced phase knife technique”, Opt. Commun., 121 (1995), 95–102 | DOI
[8] Heise B., Reinhardt M., Schausberger S., Hauser S., Bernstein S., Stifter D., “Fourier plane filtering revisited — analogies in optics and mathematics”, Sampling Theory In Signal Image Proc., 13:3 (2014), 231–248 | MR
[9] Martin R., Oppo G.-L., Harkness G. K., Scroggie A. J., Firth W. J., “Controlling pattern formation and spatio-temporal disorder in nonlinear optics”, Optics Express, 1:1 (1997), 39–44 | DOI
[10] Jensen S. J., Schwab M., Denz C., “Manipulation, stabilization, and control of pattern formation using Fourier space filtering”, Phys. Rev. letters, 81:8 (1998), 1614–1617 | DOI
[11] Schwab M., Saffman M., Denz C., Tschudi T., “Fourier control of pattern formation in an interferometric feedback configuration”, Opt. Commun., 170 (1999), 129–136 | DOI
[12] Harkness G. K., Oppo G.-L., Benkler E., Kreuzer M., Neubecker R., Tschudi T., “Fourier space control in an LCLV feedback system”, J. Opt. B.: Quantum Semiclass. Opt., 1 (1999), 177–182 | DOI
[13] Oppo G.-L., Martin R., Scroggie A. J., Harkness G. K., Lord A., Firth W. J., “Control of spatio-temporal complexity in nonlinear optics”, Chaos, Solitons Fractals, 10:4–5 (1999), 865–874
[14] Pesch M., Westhoff E. G., Ackermann T., Lange W., “Direct measurement of multiple instability regions via a Fourier filtering method in an optical pattern forming system”, Phys. Rev. Ser. E, 68 (2003), 016209 | DOI
[15] Gutlich B., Neubecker R., Kreuzer M., Tschudi T., “Control and manipulation of solitary structures in a nonlinear optical single feedback experiment”, Chaos, 13:1 (2003), 239–246 | DOI
[16] Poyneer L. A., Macintosh B. A., Veran J.-P., “Fourier transform wavefront control with adaptive prediction of the atmosphere”, J. Opt. Soc. Am. Ser. A, 24 (2007), 2645–2660 | DOI
[17] Nagashima M., Agrawal B., “Application of complex-valued FXLMS adaptive filter to Fourier basis control of adaptive optics”, American Control Conference (San Francisco, CA, USA, 2011), 2933–2944
[18] Potapov M. M., Chechkina K. A., “Ob odnoi modeli amplitudno-fazovoi filtratsii v nelineinoi opticheskoi sisteme s obratnoi svyazyu”, Vestn. mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1997, no. 4, 31–36
[19] Razgulin A. V., Chushkin V. A., “O zadache optimalnoi Fure-filtratsii dlya odnogo klassa modelei nelineinykh opticheskikh sistem s obratnoi svyazyu”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1608–1618
[20] Razgulin A. V., “Projection-difference method for controlled Fourier filtering”, Comput. Math. Modeling, 23:1 (2012), 56–71 | DOI | MR
[21] Vorontsov M. A., Zheleznykh N. I., Ivanov V. Yu., “Transverse interactions in 2-D feedback non-linear optical systems”, Opt. and Quant. Electron., 22 (1990), 501–515 | DOI
[22] Ivanov V. Yu., Larichev A. V., Vorontsov M. A., “One-dimensional rotatory waves in the optical systems with nonlinear large-scale field interactions”, Proc. SPIE, 1402, 1991, 145–153 | DOI
[23] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., Larichev A. V., Zheleznykh N. I., “Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Opt. Soc. Amer. Ser. B, 9:1 (1992), 78–90 | DOI
[24] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:1 (1993), 69–80
[25] Razgulin A. V., “Rotatsionnye volny v opticheskoi sisteme s dvumernoi obratnoi svyazyu”, Matem. modelirovanie, 5:4 (1993), 105–119
[26] Skubachevskii A. L., “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. ur-niya, 34:10 (1998), 1394–1401
[27] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear analysis: TMA, 32:2 (1998), 261–278 | DOI | MR
[28] Chushkin V. A., Razgulin A. V., “Statsionarnye struktury v funktsionalno-differentsialnom uravnenii diffuzii s otrazheniem prostranstvennogo argumenta”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2003, no. 2, 13–20
[29] Belan E. P., Lykova O. B., “Vraschayuschiesya struktury v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differents. ur-niya, 40:10 (2004), 1348–1357
[30] Potapov M. M., “Uravnenie nelineinoi optiki s preobrazovaniyami prostranstvennoi nezavisimoi peremennoi v roli upravlyayuschikh vozdeistvii”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 1997, no. 3, 13–16
[31] Razgulin A. V., “Ob odnom klasse funktsionalno-differentsialnykh parabolicheskikh uravnenii nelineinoi optiki”, Differents. ur-niya, 36:3 (2000), 400–407
[32] Razgulin A. V., “O parabolicheskikh funktsionalno-differentsialnykh uravneniyakh s upravlyaemym preobrazovaniem prostranstvennykh argumentov”, Dokl. AN, 403:4 (2005), 448–451
[33] Razgulin A. V., “Zadacha upravleniya dvumernym preobrazovaniem prostranstvennykh argumentov v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differents. ur-niya, 42:8 (2006), 1078–1091
[34] Razgulin A. V., Roganovich I. B., “Convergence of the projection difference scheme for the nonlinear parabolic equation with transformed spatial argument”, Comput. Math. Modeling, 12:3 (2001), 262–270 | DOI | MR
[35] Razgulin A. V., “Approksimatsiya zadachi upravleniya preobrazovaniem argumentov v nelineinom parabolicheskom uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1844–1856
[36] Razgulin A. V., “Proektsionno-raznostnaya skhema dlya parabolicheskogo funktsionalno-differentsialnogo uravneniya s dvumernym preobrazovaniem argumentov”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1848–1859
[37] Grebennikov V. A., Razgulin A. V., “Vesovaya otsenka skorosti skhodimosti proektsionno-raznostnoi skhemy dlya kvazilineinogo parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1294–1307
[38] Brezis H., Functional analysis. Sobolev spaces and functional differential equations, Springer, London, 2010 | MR
[39] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[40] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 71 pp.
[41] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966
[42] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Izd-vo In-ta matematiki, Novosibirsk, 2010
[43] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[44] Razgulin A. V., “O metode proektsii gradienta dlya kvazidifferentsiruemykh funktsionalov s gelderovym gradientom”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2006, no. 1, 12–15
[45] Alber Ya. I., “O minimizatsii funktsionalov klassa $C^{1,\mu}$ na ogranichennykh mnozhestvakh”, Ekonomika i matem. metody, 16 (1980), 185–190