Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1347-1373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier–Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton–Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.
@article{ZVMMF_2017_57_8_a9,
     author = {I. V. Egorov and A. V. Novikov and A. V. Fedorov},
     title = {Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1347--1373},
     year = {2017},
     volume = {57},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a9/}
}
TY  - JOUR
AU  - I. V. Egorov
AU  - A. V. Novikov
AU  - A. V. Fedorov
TI  - Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1347
EP  - 1373
VL  - 57
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a9/
LA  - ru
ID  - ZVMMF_2017_57_8_a9
ER  - 
%0 Journal Article
%A I. V. Egorov
%A A. V. Novikov
%A A. V. Fedorov
%T Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1347-1373
%V 57
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a9/
%G ru
%F ZVMMF_2017_57_8_a9
I. V. Egorov; A. V. Novikov; A. V. Fedorov. Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1347-1373. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a9/

[1] Fedorov A., “Transition and Stability of High-Speed Boundary Layers”, Annu. Rev. Fluid Mech., 43 (2011), 79–95 | DOI | MR | Zbl

[2] Kosinov A. D., Semionov N. V., Shevelkov S. G., Zinin O. I., “Experiments on the nonlinear instability of supersonic boundary layers”, Nonlinear Instability of Nonparallel Flows, eds. D. T. Valentine, S. P. Lin, W. R. C. Philips, Springer, Berlin, 1994, 196–205 | DOI | MR

[3] Kosinov A. D., Tumin A., “Resonance interaction of wave trains in supersonic boundary layer”, Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, eds. P. W. Duck, P. Hall, Kluwer Academic Publishers, Berlin, 1996, 379–388 | DOI

[4] Mayer C. S. J., Fasel H. F., Investigation of asymmetric subharmonic resonance in a supersonic boundary layer at Mach 2 using DNS, AIAA Paper, No 2008-0591, 2008

[5] Laddon D. W., Schneider S. P., Measurements of controlled wave packets at Mach 4 on a cone at angle of attack, AIAA Paper, No 1998-0436, 1998

[6] Shiplyuk A. N., Buntin D. A., Maslov A. A., Chokani N., “Nelineinye mekhanizmy nachalnoi stadii laminarno-turbulentnogo perekhoda pri giperzvukovykh skorostyakh”, Prikl. mekhan. i tekhn. fiz., 2003, no. 5, 64–71

[7] Bountin D., Shiplyuk A., Maslov A., “Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone”, J. Fluid Mech., 611 (2008), 427–442 | DOI | Zbl

[8] Casper K. M., Beresh S. J., Schneider S. P., Pressure fluctuations beneath turbulent spots and instability wave packets in a hypersonic boundary layer, AIAA Paper, No 2011-372, 2011

[9] Casper K., Beresh S., Schneider S., Characterization of controlled perturbations in a hypersonic boundary layer, AIAA Paper, No 2012-281, 2012

[10] Chou A., Schneider S. P., Time-frequency analysis of boundary layer instabilities generated by freestream laser perturbations, AIAA Paper, No 2015-3076, 2015

[11] Zhong X., Wang X., “Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers”, Annu. Rev. Fluid Mech., 44 (2012), 527–561 | DOI | MR | Zbl

[12] Fasel H. F., Numerical simulation of transition in hypersonic boundary layers, DTIC Document No ADA563832, 2011, 281 pp.

[13] Egorov I. V., Zaitsev O. L., “Ob odnom podkhode k chislennomu resheniyu dvumernykh uravnenii Nave-Stoksa metodom skvoznogo scheta”, Zh. vychisl. matem. i matem. fiz., 31:2 (1991), 286–299

[14] Egorov I. V., Ivanov D. V., “Primenenie polnostyu neyavnykh monotonnykh skhem dlya modelirovaniya ploskikh vnutrennikh techenii”, Zh. vychisl. matem. i matem. fiz., 36:12 (1996), 91–107 | Zbl

[15] Egorov I. V., Fedorov A. V., Soudakov V. G., Direct numerical simulation of supersonic boundary-layer receptivity to acoustic disturbances, AIAA Paper, No 2005-97, 2005

[16] Egorov I. V., Fedorov A. V., Soudakov V. G., “Direct numerical simulation of disturbances generated by periodic suction-blowing in a hypersonic boundary layer”, Theor. Comput. Fluid Dyn., 20:1 (2006), 41–54 | DOI | Zbl

[17] Egorov I. V., Novikov A. V., Fedorov A. V., “Chislennoe modelirovanie vozmuschenii otryvnogo techeniya v zakruglennom ugle szhatiya”, Izv. RAN. Mekhan. zhidkosti i gaza, 2006, no. 4, 39–49

[18] Egorov I. V., Novikov A. V., Fedorov A. V., “Chislennoe modelirovanie stabilizatsii sverkhzvukovogo otryvnogo pogranichnogo sloya poristym pokrytiem”, Prikl. matem. i tekhn. fiz., 2007, no. 2, 39–47

[19] Bountin D., Chimitov T., Maslov A., Novikov A., Egorov I., Fedorov A., Utyuzhnikov S., “Stabilization of a hypersonic boundary layer using a wavy surface”, AIAA Journal, 51:5 (2013), 1203–1210 | DOI

[20] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400

[21] Roe P. L., “Approximate Reimann solvers, parameter vectors, and difference schemes”, J. Comp. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[22] Jiang G. S., Shu C. W., “Efficient Implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl

[23] Karimov T. Kh., “O nekotorykh iteratsionnykh metodakh resheniya nelineinykh uravnenii v gilbertovom prostranstve”, Dokl. AN SSSR, 269:5 (1983), 1038–1046

[24] Saad Y., Shultz M. H., “GMRes: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Scient. Statist. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl

[25] Babaev I. Yu., Bashkin V. A., Egorov I. V., “Chislennoe reshenie uravnenii Nave-Stoksa s ispolzovaniem iteratsionnykh metodov variatsionnogo tipa”, Zh. vychisl. matem. i matem. fiz., 34:11 (1994), 1693–1703 | Zbl

[26] CFD General Notation System, , 2016 (data obrascheniya: 15.11.2016) http://cgns.org/

[27] Balay S., Brown J., Buschelman K., Gropp W. D., Kaushik D., Knepley M. G., McInnes L. C., Smith B. F., Zhang H., PETSc Web page, , 2016 (data obrascheniya: 15.11.2016) http://www.mcs.anl.gov/petsc

[28] Sivasubramanian J., Fasel H. F., Transition Initiated by a localized disturbance in a hypersonic flat-plate boundary layer, AIAA paper, No 2011-374, 2011

[29] Franko K. J., Bhaskaran R., Lele S. K., Direct numerical simulation of transition and heat-transfer overshoot in a mach 6 flat plate boundary layer, AIAA Paper, No 2011-3874, 2011