Stability theory for a two-dimensional channel
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1331-1346
Voir la notice de l'article provenant de la source Math-Net.Ru
A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.
@article{ZVMMF_2017_57_8_a8,
author = {O. V. Troshkin},
title = {Stability theory for a two-dimensional channel},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1331--1346},
publisher = {mathdoc},
volume = {57},
number = {8},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a8/}
}
O. V. Troshkin. Stability theory for a two-dimensional channel. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1331-1346. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a8/