A hybrid method for numerical solution of Poisson’s equation in a domain with a dielectric corner
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1321-1330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An electrostatic problem of determining a potential in a domain containing an incoming dielectric corner, which reduces to solving Poisson’s equation in this domain, is considered. A specific feature of the solution of this problem is that it is bounded in a neighborhood of the dielectric corner but its gradient increases without limit. An efficient hybrid algorithm for the numerical solution of the problem, based on the finite element method and taking into account the known asymptotic representation of the solution in the neighborhood of the dielectric corner, is proposed.
@article{ZVMMF_2017_57_8_a7,
     author = {A. N. Bogolyubov and A. I. Erokhin and I. E. Mogilevskii and M. Svetkin},
     title = {A hybrid method for numerical solution of {Poisson{\textquoteright}s} equation in a domain with a dielectric corner},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1321--1330},
     year = {2017},
     volume = {57},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a7/}
}
TY  - JOUR
AU  - A. N. Bogolyubov
AU  - A. I. Erokhin
AU  - I. E. Mogilevskii
AU  - M. Svetkin
TI  - A hybrid method for numerical solution of Poisson’s equation in a domain with a dielectric corner
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1321
EP  - 1330
VL  - 57
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a7/
LA  - ru
ID  - ZVMMF_2017_57_8_a7
ER  - 
%0 Journal Article
%A A. N. Bogolyubov
%A A. I. Erokhin
%A I. E. Mogilevskii
%A M. Svetkin
%T A hybrid method for numerical solution of Poisson’s equation in a domain with a dielectric corner
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1321-1330
%V 57
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a7/
%G ru
%F ZVMMF_2017_57_8_a7
A. N. Bogolyubov; A. I. Erokhin; I. E. Mogilevskii; M. Svetkin. A hybrid method for numerical solution of Poisson’s equation in a domain with a dielectric corner. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1321-1330. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a7/

[1] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[2] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, Uspekhi matem. nauk, 38:2 (1983), 3–76

[3] Kondratev V. A., “Osobennosti resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. ur-niya, 13:11 (1977), 2026–2032 | Zbl

[4] Tsarin Y. A., “K raschetu proboinogo elektromagnitnogo polya v nizkotemperaturnykh SVCh plazmatronakh”, Radiofiz. i radioastronomiya, 6:4 (2013), 323

[5] Bogolyubov A. N., Mogilevskii I. E., “Povedenie resheniya ellipticheskikh kraevykh zadach v okrestnosti uglovoi tochki linii razryva koeffitsientov”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 2253–2259 | Zbl

[6] Bogolyubov A. N. i dr., “Problema vychisleniya volnovodnykh mod pri nalichii vkhodyaschikh reber”, Zh. radioelektroniki (elektronnyi zhurnal), 2001, no. 8 http://jre.cplire.ru

[7] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., Sveshnikov A. G., “Osobennosti normalnykh voln neodnorodnogo volnovoda s vkhodyaschimi rebrami”, Radiotekhn. i elektronika, 48:7 (2003), 1–8

[8] Johnson C., Numerical solutions of partial differential equations by the rinite element method, Cambridge University Press, Cambridge, 1987 | MR

[9] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1981

[10] Georgiou G. C., Schultz W. W., Olson L. G., “Singular finite elements for the sudden-expansion and the die-swell problems”, Internat. J. Numerical Methods in Fluids, 10:4 (1990), 357–372 | DOI | Zbl